論文の概要: Context-Conditional Navigation with a Learning-Based Terrain- and Robot-Aware Dynamics Model
- arxiv url: http://arxiv.org/abs/2307.09206v3
- Date: Sat, 05 Oct 2024 06:20:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-08 13:09:37.831326
- Title: Context-Conditional Navigation with a Learning-Based Terrain- and Robot-Aware Dynamics Model
- Title(参考訳): 学習型測地・ロボット認識ダイナミクスモデルを用いたコンテキストコンディションナビゲーション
- Authors: Suresh Guttikonda, Jan Achterhold, Haolong Li, Joschka Boedecker, Joerg Stueckler,
- Abstract要約: 我々は,TRADYNと呼ばれる新しい確率的,地形的,ロボット対応のフォワードダイナミクスモデルを開発した。
本研究では,一輪式ロボットと空間的に異なる摩擦係数を持つ異なる地形配置を備えた2次元ナビゲーション環境において,本手法の評価を行った。
- 参考スコア(独自算出の注目度): 11.800678688260081
- License:
- Abstract: In autonomous navigation settings, several quantities can be subject to variations. Terrain properties such as friction coefficients may vary over time depending on the location of the robot. Also, the dynamics of the robot may change due to, e.g., different payloads, changing the system's mass, or wear and tear, changing actuator gains or joint friction. An autonomous agent should thus be able to adapt to such variations. In this paper, we develop a novel probabilistic, terrain- and robot-aware forward dynamics model, termed TRADYN, which is able to adapt to the above-mentioned variations. It builds on recent advances in meta-learning forward dynamics models based on Neural Processes. We evaluate our method in a simulated 2D navigation setting with a unicycle-like robot and different terrain layouts with spatially varying friction coefficients. In our experiments, the proposed model exhibits lower prediction error for the task of long-horizon trajectory prediction, compared to non-adaptive ablation models. We also evaluate our model on the downstream task of navigation planning, which demonstrates improved performance in planning control-efficient paths by taking robot and terrain properties into account.
- Abstract(参考訳): 自律的なナビゲーション設定では、いくつかの量にはバリエーションがある。
摩擦係数のような地形特性は、ロボットの位置によって時間とともに変化する可能性がある。
また、ロボットのダイナミクスは、例えば、異なるペイロード、システムの質量の変化、摩耗と損傷、アクチュエータの利得の変化、関節摩擦によって変化する可能性がある。
したがって、自律的なエージェントはそのようなバリエーションに適応できるはずである。
本稿では,その変動に適応できる新しい確率的,地形的,ロボット対応のフォワードダイナミクスモデルであるTRADYNを開発する。
ニューラルプロセスに基づいたメタラーニングフォワードダイナミクスモデルの最近の進歩の上に構築されている。
本研究では,一輪式ロボットと空間的に異なる摩擦係数を持つ異なる地形配置を備えた2次元ナビゲーション環境において,本手法の評価を行った。
本実験では,非適応的アブレーションモデルと比較して,長距離軌道予測のタスクに対する予測誤差が低いことを示した。
また,ナビゲーション計画の下流作業において,ロボットと地形特性を考慮に入れた制御効率の高い経路を計画する際の性能向上を示すモデルについても検討した。
関連論文リスト
- Learning a Terrain- and Robot-Aware Dynamics Model for Autonomous Mobile Robot Navigation [8.261491880782769]
本稿では,確率的,地形的,ロボット対応のフォワードダイナミクスモデル(TRADYN)を学習するための新しいアプローチを提案する。
本研究では, 空間的に異なる摩擦係数を持つ地形特性を持つ一サイクル動的ロボットの2次元ナビゲーションシミュレーションにおいて, 提案手法の評価を行った。
論文 参考訳(メタデータ) (2024-09-17T16:46:39Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
自動運転開発における長年の課題は、記録された運転ログからシードされた動的運転シナリオをシミュレートすることだ。
車両、歩行者、サイクリストが運転シナリオでどのように相互作用するかをモデル化するために、離散シーケンスモデリングのツールを適用します。
我々のモデルはSim Agents Benchmarkを上回り、リアリズムメタメトリックの先行作業の3.3%、インタラクションメトリックの9.9%を上回ります。
論文 参考訳(メタデータ) (2023-12-07T18:53:27Z) - Online Calibration of a Single-Track Ground Vehicle Dynamics Model by Tight Fusion with Visual-Inertial Odometry [8.165828311550152]
視覚的慣性眼圧計(VIO)を用いた車輪付き地上車両の単トラックダイナミックスモデルに厳密に融合する新しいアプローチST-VIOを提案する。
提案手法は,将来的な制御入力における前方予測の精度を向上させるために,動的モデルをオンラインで校正し,適応する。
論文 参考訳(メタデータ) (2023-09-20T08:50:30Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
ロボット工学のための自己教師型感覚運動器事前学習手法を提案する。
我々のモデルはRTTと呼ばれ、センサモレータトークンのシーケンスで動作するトランスフォーマーである。
感覚運動の事前学習は、ゼロからトレーニングを一貫して上回り、優れたスケーリング特性を持ち、さまざまなタスク、環境、ロボット間での移動を可能にしている。
論文 参考訳(メタデータ) (2023-06-16T17:58:10Z) - Improving Deep Dynamics Models for Autonomous Vehicles with Multimodal
Latent Mapping of Surfaces [23.023397401781757]
そこで本稿では,潜伏変数ベクトルに条件付けすることで表面認識力学モデルを学ぶ新しい手法を提案する。
潜時マッパーは、複数のモードからの推論中にこれらの潜時変数を更新するように訓練される。
このモデルを用いることで、様々な面および困難面において駆動性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2023-03-21T11:21:31Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
我々は,データ駆動型交通シミュレーションを世界モデルとして定式化できることを示した。
動作予測とエンドツーエンドの運転に基づくマルチエージェントポリシーであるTrafficBotsを紹介する。
オープンモーションデータセットの実験は、TrafficBotsが現実的なマルチエージェント動作をシミュレートできることを示している。
論文 参考訳(メタデータ) (2023-03-07T18:28:41Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
我々は,動的・シミュレータモデルと実ロボット間の残差を学習する。
学習した残差誤差により、動的モデル、シミュレーション、および実際のハードウェア間の現実的ギャップをさらに埋めることができることを示す。
論文 参考訳(メタデータ) (2022-09-07T15:15:12Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
データからシステムの微分可能なダイナミクスモデルを学習するために、機械学習技術を使用します。
ニューラルネットワークは、大規模な時間的地平線に対して、非常に非線形な振る舞いを正確にモデル化できることが示される。
ハードウェア実験において、学習したモデルがSpotとRadio- controlled (RC)の両方の複雑な力学を表現できることを実証した。
論文 参考訳(メタデータ) (2022-04-09T22:07:34Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
オペレーショナル・スペース・コントロール(OSC)は、操作のための効果的なタスクスペース・コントローラとして使われてきた。
本稿では,データ駆動型OSCのモデル誤差を補償するOSC for Adaptation and Robustness (OSCAR)を提案する。
本手法は,様々なシミュレーション操作問題に対して評価し,制御器のベースラインの配列よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2021-10-02T01:21:38Z) - Meta-Reinforcement Learning for Adaptive Motor Control in Changing Robot
Dynamics and Environments [3.5309638744466167]
この研究は、ロバストな移動のための異なる条件に制御ポリシーを適応させるメタラーニングアプローチを開発した。
提案手法は, インタラクションモデルを更新し, 推定された状態-作用軌道のアクションをサンプル化し, 最適なアクションを適用し, 報酬を最大化する。
論文 参考訳(メタデータ) (2021-01-19T12:57:12Z) - Trajectron++: Dynamically-Feasible Trajectory Forecasting With
Heterogeneous Data [37.176411554794214]
人間の動きに関する推論は、安全で社会的に認識されたロボットナビゲーションにとって重要な前提条件である。
我々は,多種多様なエージェントの軌道を予測できるモジュール型グラフ構造化リカレントモデルであるTrajectron++を提案する。
実世界の軌道予測データセットにおいて,その性能を実証する。
論文 参考訳(メタデータ) (2020-01-09T16:47:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。