Decomposing Gaussians with Unknown Covariance
- URL: http://arxiv.org/abs/2409.11497v1
- Date: Tue, 17 Sep 2024 18:56:08 GMT
- Title: Decomposing Gaussians with Unknown Covariance
- Authors: Ameer Dharamshi, Anna Neufeld, Lucy L. Gao, Jacob Bien, Daniela Witten,
- Abstract summary: We present a general algorithm that encompasses all previous decomposition approaches for Gaussian data as special cases.
It yields a new and more flexible alternative to sample splitting when $n>1$.
We apply these decompositions to the tasks of model selection and post-selection inference in settings where alternative strategies are unavailable.
- Score: 3.734088413551237
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Common workflows in machine learning and statistics rely on the ability to partition the information in a data set into independent portions. Recent work has shown that this may be possible even when conventional sample splitting is not (e.g., when the number of samples $n=1$, or when observations are not independent and identically distributed). However, the approaches that are currently available to decompose multivariate Gaussian data require knowledge of the covariance matrix. In many important problems (such as in spatial or longitudinal data analysis, and graphical modeling), the covariance matrix may be unknown and even of primary interest. Thus, in this work we develop new approaches to decompose Gaussians with unknown covariance. First, we present a general algorithm that encompasses all previous decomposition approaches for Gaussian data as special cases, and can further handle the case of an unknown covariance. It yields a new and more flexible alternative to sample splitting when $n>1$. When $n=1$, we prove that it is impossible to partition the information in a multivariate Gaussian into independent portions without knowing the covariance matrix. Thus, we use the general algorithm to decompose a single multivariate Gaussian with unknown covariance into dependent parts with tractable conditional distributions, and demonstrate their use for inference and validation. The proposed decomposition strategy extends naturally to Gaussian processes. In simulation and on electroencephalography data, we apply these decompositions to the tasks of model selection and post-selection inference in settings where alternative strategies are unavailable.
Related papers
- Learning general Gaussian mixtures with efficient score matching [16.06356123715737]
We study the problem of learning mixtures of $k$ Gaussians in $d$ dimensions.
We make no separation assumptions on the underlying mixture components.
We give an algorithm that draws $dmathrmpoly(k/varepsilon)$ samples from the target mixture, runs in sample-polynomial time, and constructs a sampler.
arXiv Detail & Related papers (2024-04-29T17:30:36Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
We propose a collaborative inverse propensity score estimator for causal inference with heterogeneous data.
Our method shows significant improvements over the methods based on meta-analysis when heterogeneity increases.
arXiv Detail & Related papers (2024-04-24T09:04:36Z) - Data thinning for convolution-closed distributions [2.299914829977005]
We propose data thinning, an approach for splitting an observation into two or more independent parts that sum to the original observation.
We show that data thinning can be used to validate the results of unsupervised learning approaches.
arXiv Detail & Related papers (2023-01-18T02:47:41Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
We derive a likelihood characterisation for the overall data that leads us to extend a previous EM-based algorithm.
The new algorithm learns to approximate the (unidentifiability) region of model parameters from such mixed data sources.
It delivers interval approximations to counterfactual results, which collapse to points in the identifiable case.
arXiv Detail & Related papers (2022-12-06T12:42:11Z) - Compound Batch Normalization for Long-tailed Image Classification [77.42829178064807]
We propose a compound batch normalization method based on a Gaussian mixture.
It can model the feature space more comprehensively and reduce the dominance of head classes.
The proposed method outperforms existing methods on long-tailed image classification.
arXiv Detail & Related papers (2022-12-02T07:31:39Z) - Unsupervised Anomaly and Change Detection with Multivariate
Gaussianization [8.508880949780893]
Anomaly detection is a challenging problem given the high-dimensionality of the data.
We propose an unsupervised method for detecting anomalies and changes in remote sensing images.
We show the efficiency of the method in experiments involving both anomaly detection and change detection.
arXiv Detail & Related papers (2022-04-12T10:52:33Z) - Equivariance Discovery by Learned Parameter-Sharing [153.41877129746223]
We study how to discover interpretable equivariances from data.
Specifically, we formulate this discovery process as an optimization problem over a model's parameter-sharing schemes.
Also, we theoretically analyze the method for Gaussian data and provide a bound on the mean squared gap between the studied discovery scheme and the oracle scheme.
arXiv Detail & Related papers (2022-04-07T17:59:19Z) - A Robust and Flexible EM Algorithm for Mixtures of Elliptical
Distributions with Missing Data [71.9573352891936]
This paper tackles the problem of missing data imputation for noisy and non-Gaussian data.
A new EM algorithm is investigated for mixtures of elliptical distributions with the property of handling potential missing data.
Experimental results on synthetic data demonstrate that the proposed algorithm is robust to outliers and can be used with non-Gaussian data.
arXiv Detail & Related papers (2022-01-28T10:01:37Z) - Nonlinear Distribution Regression for Remote Sensing Applications [6.664736150040092]
In many remote sensing applications one wants to estimate variables or parameters of interest from observations.
Standard algorithms such as neural networks, random forests or Gaussian processes are readily available to relate to the two.
This paper introduces a nonlinear (kernel-based) method for distribution regression that solves the previous problems without making any assumption on the statistics of the grouped data.
arXiv Detail & Related papers (2020-12-07T22:04:43Z) - Robustly Learning any Clusterable Mixture of Gaussians [55.41573600814391]
We study the efficient learnability of high-dimensional Gaussian mixtures in the adversarial-robust setting.
We provide an algorithm that learns the components of an $epsilon$-corrupted $k$-mixture within information theoretically near-optimal error proofs of $tildeO(epsilon)$.
Our main technical contribution is a new robust identifiability proof clusters from a Gaussian mixture, which can be captured by the constant-degree Sum of Squares proof system.
arXiv Detail & Related papers (2020-05-13T16:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.