論文の概要: Perceptions of Edinburgh: Capturing Neighbourhood Characteristics by Clustering Geoparsed Local News
- arxiv url: http://arxiv.org/abs/2409.11505v1
- Date: Tue, 17 Sep 2024 19:17:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 15:26:45.173002
- Title: Perceptions of Edinburgh: Capturing Neighbourhood Characteristics by Clustering Geoparsed Local News
- Title(参考訳): エディンバラの認識:地域ニュースのクラスタリングによる近隣特性の把握
- Authors: Andreas Grivas, Claire Grover, Richard Tobin, Clare Llewellyn, Eleojo Oluwaseun Abubakar, Chunyu Zheng, Chris Dibben, Alan Marshall, Jamie Pearce, Beatrice Alex,
- Abstract要約: 地域ニュース記事を用いて近隣住民を特徴付ける手法を提案する。
具体的には、NLP(Natural Language Processing)を用いて、近隣地域に関するさらなる情報をアンロックする方法を示す。
私たちの仕事は、地域に合わせて調整された街路レベルのジオパーシングと、完全なニュース記事のクラスタリングを組み合わせることで、新しくなっています。
- 参考スコア(独自算出の注目度): 4.375821492891841
- License:
- Abstract: The communities that we live in affect our health in ways that are complex and hard to define. Moreover, our understanding of the place-based processes affecting health and inequalities is limited. This undermines the development of robust policy interventions to improve local health and well-being. News media provides social and community information that may be useful in health studies. Here we propose a methodology for characterising neighbourhoods by using local news articles. More specifically, we show how we can use Natural Language Processing (NLP) to unlock further information about neighbourhoods by analysing, geoparsing and clustering news articles. Our work is novel because we combine street-level geoparsing tailored to the locality with clustering of full news articles, enabling a more detailed examination of neighbourhood characteristics. We evaluate our outputs and show via a confluence of evidence, both from a qualitative and a quantitative perspective, that the themes we extract from news articles are sensible and reflect many characteristics of the real world. This is significant because it allows us to better understand the effects of neighbourhoods on health. Our findings on neighbourhood characterisation using news data will support a new generation of place-based research which examines a wider set of spatial processes and how they affect health, enabling new epidemiological research.
- Abstract(参考訳): 私たちが暮らしているコミュニティは、複雑で定義が難しい方法で私たちの健康に影響を与えます。
さらに、健康や不平等に影響を与える場所ベースプロセスの理解は限られている。
このことは、地域の健康と幸福を改善するための堅牢な政策介入の発達を損なう。
ニュースメディアは、健康研究に有用な社会情報やコミュニティ情報を提供している。
本稿では,地域ニュース記事を用いた地域特性評価手法を提案する。
より具体的には、自然言語処理(NLP)を用いて、ニュース記事を分析、ジオパーシング、クラスタリングすることで、近隣に関するさらなる情報を解き放つ方法を示す。
本研究は,地域に合わせて調整された街路レベルのジオパーシングと全ニュース記事のクラスタリングを組み合わせることで,周辺特性のより詳細な検証を可能にするため,新しい作業である。
質的,定量的両面から,新聞記事から抽出したテーマは合理的であり,実世界の多くの特徴を反映していることを示す。
これは、近隣住民が健康に与える影響をよりよく理解できるためである。
ニュースデータを用いた地域特性評価は, より広い空間過程と健康への影響を調査し, 新たな疫学研究を可能にした, 場所ベースの新しい世代の研究を支援する。
関連論文リスト
- Using Graph Neural Networks to Predict Local Culture [2.5870115809699783]
本研究では, 周辺地域の内部特性に関する複数の情報ソースを結合し, 評価するグラフニューラルネットワーク(GNN)手法を提案する。
Yelpからパブリックな大規模データセットを探索することにより、近隣属性の予測における構造的連結性を考慮したアプローチの可能性を示す。
論文 参考訳(メタデータ) (2024-02-27T21:43:14Z) - Tracking the Newsworthiness of Public Documents [107.12303391111014]
この研究は、サンフランシスコ・クロニクル(San Francisco Chronicle)によるサンフランシスコ・ベイエリアにおける地方公共政策のニュース報道に焦点を当てている。
まず、新聞記事、公共政策文書、会議記録を収集し、確率的関係モデルを用いてそれらをリンクする。
第二に、ポリシー項目がカバーされるかどうかを予測するために、ニューズサステイネス予測という新しいタスクを定義します。
論文 参考訳(メタデータ) (2023-11-16T10:05:26Z) - Towards Corpus-Scale Discovery of Selection Biases in News Coverage:
Comparing What Sources Say About Entities as a Start [65.28355014154549]
本稿では,大規模ニュースコーパスにおけるニュースコンテンツから直接メディア選択バイアスのパターンを発見するために,スケーラブルなNLPシステムを構築する上での課題について検討する。
我々は,世界519のニュースソースから180万件のニュース記事のコーパスであるNELA-2020のケーススタディを通じて,フレームワークの能力を示す。
論文 参考訳(メタデータ) (2023-04-06T23:36:45Z) - Exploring Fake News Detection with Heterogeneous Social Media Context
Graphs [4.2177790395417745]
フェイクニュースの検出は、社会全体に直接的な影響を与えるため、純粋に学術的な関心を超える研究領域となっている。
本稿では,ニュース記事を取り巻く異質なソーシャルコンテキストグラフを構築し,問題をグラフ分類タスクとして再構築することを提案する。
論文 参考訳(メタデータ) (2022-12-13T13:29:47Z) - Ensuring the Inclusive Use of Natural Language Processing in the Global
Response to COVID-19 [58.720142291102135]
低リソース言語を網羅することで、現在のNLPアプローチと将来のNLPアプローチをより包括的に行う方法について議論する。
我々は,NLPの正の社会的影響を最大化することに関心のある研究者のために,いくつかの今後の方向性を提案する。
論文 参考訳(メタデータ) (2021-08-11T12:54:26Z) - Health Status Prediction with Local-Global Heterogeneous Behavior Graph [69.99431339130105]
ウェアラブルセンサから継続的に収集される各種データストリームにより、健康状態の推定が可能です。
行動関連マルチソースデータストリームをローカル・グローバル・グラフでモデル化することを提案する。
学生生活データセットを用いて実験を行い,提案モデルの有効性を実証した。
論文 参考訳(メタデータ) (2021-03-23T11:10:04Z) - Automatic Extraction of Urban Outdoor Perception from Geolocated
Free-Texts [1.8419317899207144]
本稿では,人々の知覚を抽出するための,自動的かつ汎用的なアプローチを提案する。
我々は、シカゴ、ニューヨーク、ロンドンにおける都市屋外の文脈における我々のアプローチを例示する。
本手法は,異なる視点を考慮し,都市部をよりよく理解する上で有効であることを示す。
論文 参考訳(メタデータ) (2020-10-13T14:59:46Z) - Assessing the Severity of Health States based on Social Media Posts [62.52087340582502]
ユーザの健康状態の重症度を評価するために,テキストコンテンツとコンテキスト情報の両方をモデル化する多視点学習フレームワークを提案する。
多様なNLUビューは、ユーザの健康を評価するために、タスクと個々の疾患の両方に効果を示す。
論文 参考訳(メタデータ) (2020-09-21T03:45:14Z) - Exposure Density and Neighborhood Disparities in COVID-19 Infection
Risk: Using Large-scale Geolocation Data to Understand Burdens on Vulnerable
Communities [1.2526963688768453]
本研究では,高空間・時間分解能の近傍活動レベルを定量化する手法を開発した。
本研究では, 露光密度を, 特定地域における局所的な活動量と非居住地および屋外土地利用における活動量の比率の尺度として定義する。
論文 参考訳(メタデータ) (2020-08-04T15:41:24Z) - Ginger Cannot Cure Cancer: Battling Fake Health News with a
Comprehensive Data Repository [40.76937321931461]
インターネット上で拡散している偽の健康ニュースは、公衆衛生にとって深刻な脅威となっている。
我々は、豊富な特徴を持つニュースコンテンツ、詳細な説明を含むニュースレビュー、ソーシャルエンゲージメント、ユーザー・ユーザー・ソーシャルネットワークを含む包括的リポジトリ、FakeHealthを構築した。
論文 参考訳(メタデータ) (2020-01-27T17:27:58Z) - Mining Disinformation and Fake News: Concepts, Methods, and Recent
Advancements [55.33496599723126]
偽ニュースを含む偽ニュースは 爆発的な成長により グローバルな現象になっています
偽情報や偽ニュースを検知する最近の進歩にもかかわらず、その複雑さ、多様性、多様性、事実チェックやアノテーションのコストが原因で、いまだに自明ではない。
論文 参考訳(メタデータ) (2020-01-02T21:01:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。