論文の概要: Mamba Fusion: Learning Actions Through Questioning
- arxiv url: http://arxiv.org/abs/2409.11513v1
- Date: Tue, 17 Sep 2024 19:36:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 19:59:44.527650
- Title: Mamba Fusion: Learning Actions Through Questioning
- Title(参考訳): Mamba Fusion: 質問を通じて行動を学ぶ
- Authors: Zhikang Dong, Apoorva Beedu, Jason Sheinkopf, Irfan Essa,
- Abstract要約: ビデオ言語モデル(VLM)は、多様なタスクを一般化し、学習を強化するために言語キューを使用するために不可欠である。
本稿では,長距離依存関係を効率的にキャプチャし,視覚と言語データの共同表現を学習する新しいモデルであるMambaVLを紹介する。
MambaVLは、Epic-Kitchens-100データセット上でのアクション認識における最先端のパフォーマンスを達成する。
- 参考スコア(独自算出の注目度): 12.127052057927182
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video Language Models (VLMs) are crucial for generalizing across diverse tasks and using language cues to enhance learning. While transformer-based architectures have been the de facto in vision-language training, they face challenges like quadratic computational complexity, high GPU memory usage, and difficulty with long-term dependencies. To address these limitations, we introduce MambaVL, a novel model that leverages recent advancements in selective state space modality fusion to efficiently capture long-range dependencies and learn joint representations for vision and language data. MambaVL utilizes a shared state transition matrix across both modalities, allowing the model to capture information about actions from multiple perspectives within the scene. Furthermore, we propose a question-answering task that helps guide the model toward relevant cues. These questions provide critical information about actions, objects, and environmental context, leading to enhanced performance. As a result, MambaVL achieves state-of-the-art performance in action recognition on the Epic-Kitchens-100 dataset and outperforms baseline methods in action anticipation.
- Abstract(参考訳): ビデオ言語モデル(VLM)は、多様なタスクを一般化し、学習を強化するために言語キューを使用するために不可欠である。
トランスフォーマーベースのアーキテクチャは視覚言語トレーニングのデファクトだが、二次計算の複雑さ、高いGPUメモリ使用量、長期依存の難しさといった課題に直面している。
これらの制約に対処するため、我々は、近頃の選択状態空間のモダリティ融合の進歩を活用して、長距離依存を効率的に捕捉し、視覚と言語データの共同表現を学習する新しいモデルであるMambaVLを紹介した。
MambaVLは両方のモードで共有状態遷移行列を使用し、モデルがシーン内の複数の視点からアクションに関する情報をキャプチャすることができる。
さらに,本論文では,モデルが関連する手がかりへ導くのに役立つ質問応答タスクを提案する。
これらの質問は、アクション、オブジェクト、環境コンテキストに関する重要な情報を提供し、パフォーマンスの向上につながります。
結果として、MambaVLはEpic-Kitchens-100データセット上でのアクション認識における最先端のパフォーマンスを達成し、アクション予測におけるベースラインメソッドよりも優れている。
関連論文リスト
- Vision Language Models are In-Context Value Learners [89.29486557646624]
本稿では、視覚言語モデル(VLM)に埋め込まれた世界的知識を活用してタスクの進捗を予測する普遍的価値関数推定器である生成価値学習(GVL)を提案する。
ロボットやタスク固有のトレーニングがなければ、GVLは300以上の異なる現実世界のタスクに対して、ゼロショットと数ショットの効果的な値をインコンテキストで予測することができる。
論文 参考訳(メタデータ) (2024-11-07T09:17:50Z) - ADEM-VL: Adaptive and Embedded Fusion for Efficient Vision-Language Tuning [38.26304604660713]
ADEM-VLは、事前訓練された大規模言語モデルに基づいてモデルをチューニングする効率的な視覚言語手法である。
我々のフレームワークはScienceQAデータセットの平均精度を0.77%上回る。
論文 参考訳(メタデータ) (2024-10-23T11:31:06Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - Meteor: Mamba-based Traversal of Rationale for Large Language and Vision Models [42.182009352159]
We present a new efficient LLVM, Mamba based traversal of rationales (Meteor)
豊富な情報を含む長大な論理を埋め込むために,線形時間複雑性を伴う逐次データ処理が可能なMambaアーキテクチャを用いる。
その後、バックボーン・マルチモーダル言語モデル (MLM) を訓練し、合理性の助けを借りて回答を生成する。
論文 参考訳(メタデータ) (2024-05-24T14:04:03Z) - Vision Mamba: A Comprehensive Survey and Taxonomy [11.025533218561284]
状態空間モデル (State Space Model, SSM) は、動的システムの振る舞いを記述・解析するために用いられる数学的モデルである。
最新の状態空間モデルに基づいて、Mambaは時間変化パラメータをSSMにマージし、効率的なトレーニングと推論のためのハードウェア認識アルゴリズムを定式化する。
Mambaは、Transformerを上回る可能性のある、新たなAIアーキテクチャになることが期待されている。
論文 参考訳(メタデータ) (2024-05-07T15:30:14Z) - RelationVLM: Making Large Vision-Language Models Understand Visual Relations [66.70252936043688]
本稿では,複数の画像にまたがっても動画内でも,様々なレベルの関係を解釈できる大規模視覚言語モデルであるRelationVLMを提案する。
具体的には,多段階的な関係認識学習手法とそれに対応するデータ構成戦略を考案し,意味的関係を理解する能力を備えた関係VLMを提案する。
論文 参考訳(メタデータ) (2024-03-19T15:01:19Z) - Expanding Frozen Vision-Language Models without Retraining: Towards
Improved Robot Perception [0.0]
視覚言語モデル(VLM)は、視覚的質問応答と推論タスクにおいて強力な能力を示している。
本稿では,異なるモダリティの埋め込み空間を視覚埋め込み空間に整列させる手法を示す。
複数モードを入力として使用すると、VLMのシーン理解が向上し、様々なタスクにおける全体的なパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2023-08-31T06:53:55Z) - Multi-View Class Incremental Learning [57.14644913531313]
マルチビュー学習(MVL)は、下流タスクのパフォーマンスを改善するためにデータセットの複数の視点から情報を統合することで大きな成功を収めている。
本稿では,複数視点クラスインクリメンタルラーニング(MVCIL)と呼ばれる新しいパラダイムについて考察する。
論文 参考訳(メタデータ) (2023-06-16T08:13:41Z) - Learning without Forgetting for Vision-Language Models [65.49600786387106]
CIL(Class-Incremental Learning)あるいは継続的学習(Continuous Learning)は、現実世界において望ましい能力である。
VLM(Vision-Language Models)の最近の進歩は、一般化可能な表現を学習する上で有望な能力を示している。
本稿では,VLM を忘れずに学習できる ProjectiOn Fusion (PROOF) を提案する。
論文 参考訳(メタデータ) (2023-05-30T17:59:32Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
提案手法は, 等価計算コストの高密度モデルに対して, 様々なベンチマークにおいて, 最先端性能を実現することができることを示す。
我々の研究は、MoEモデルのトレーニングの安定化、モデル解釈可能性に対するMoEの影響の理解、ビジョン言語モデルをスケールする際の計算性能間のトレードオフのバランスに関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2023-03-13T16:00:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。