VALO: A Versatile Anytime Framework for LiDAR-based Object Detection Deep Neural Networks
- URL: http://arxiv.org/abs/2409.11542v1
- Date: Tue, 17 Sep 2024 20:30:35 GMT
- Title: VALO: A Versatile Anytime Framework for LiDAR-based Object Detection Deep Neural Networks
- Authors: Ahmet Soyyigit, Shuochao Yao, Heechul Yun,
- Abstract summary: This work addresses the challenge of adapting dynamic deadline requirements for LiDAR object detection deep neural networks (DNNs)
We introduce VALO (Versatile Anytime algorithm for LiDAR Object detection), a novel data-centric approach that enables anytime computing of 3D LiDAR object detection DNNs.
We implement VALO on state-of-the-art 3D LiDAR object detection networks, namely CenterPoint and VoxelNext, and demonstrate its dynamic adaptability to a wide range of time constraints.
- Score: 4.953750672237398
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This work addresses the challenge of adapting dynamic deadline requirements for LiDAR object detection deep neural networks (DNNs). The computing latency of object detection is critically important to ensure safe and efficient navigation. However, state-of-the-art LiDAR object detection DNNs often exhibit significant latency, hindering their real-time performance on resource-constrained edge platforms. Therefore, a tradeoff between detection accuracy and latency should be dynamically managed at runtime to achieve optimum results. In this paper, we introduce VALO (Versatile Anytime algorithm for LiDAR Object detection), a novel data-centric approach that enables anytime computing of 3D LiDAR object detection DNNs. VALO employs a deadline-aware scheduler to selectively process input regions, making execution time and accuracy tradeoffs without architectural modifications. Additionally, it leverages efficient forecasting of past detection results to mitigate possible loss of accuracy due to partial processing of input. Finally, it utilizes a novel input reduction technique within its detection heads to significantly accelerate execution without sacrificing accuracy. We implement VALO on state-of-the-art 3D LiDAR object detection networks, namely CenterPoint and VoxelNext, and demonstrate its dynamic adaptability to a wide range of time constraints while achieving higher accuracy than the prior state-of-the-art. Code is available athttps://github.com/CSL-KU/VALO}{github.com/CSL-KU/VALO.
Related papers
- TimePillars: Temporally-Recurrent 3D LiDAR Object Detection [8.955064958311517]
TimePillars is a temporally-recurrent object detection pipeline.
It exploits the pillar representation of LiDAR data across time.
We show how basic building blocks are enough to achieve robust and efficient results.
arXiv Detail & Related papers (2023-12-22T10:25:27Z) - RIDE: Real-time Intrusion Detection via Explainable Machine Learning
Implemented in a Memristor Hardware Architecture [24.824596231020585]
We propose a packet-level network intrusion detection solution that makes use of Recurrent Autoencoders to integrate an arbitrary-length sequence of packets into a more compact joint feature embedding.
We show that our approach leads to an extremely efficient, real-time solution with high detection accuracy at the packet level.
arXiv Detail & Related papers (2023-11-27T17:30:19Z) - Rethinking Voxelization and Classification for 3D Object Detection [68.8204255655161]
The main challenge in 3D object detection from LiDAR point clouds is achieving real-time performance without affecting the reliability of the network.
We present a solution to improve network inference speed and precision at the same time by implementing a fast dynamic voxelizer.
In addition, we propose a lightweight detection sub-head model for classifying predicted objects and filter out false detected objects.
arXiv Detail & Related papers (2023-01-10T16:22:04Z) - Anytime-Lidar: Deadline-aware 3D Object Detection [5.491655566898372]
We propose a scheduling algorithm, which intelligently selects the subset of the components to make effective time and accuracy trade-off on the fly.
We apply our approach to a state-of-art 3D object detection network, PointPillars, and evaluate its performance on Jetson Xavier AGX dataset.
arXiv Detail & Related papers (2022-08-25T16:07:10Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - SALISA: Saliency-based Input Sampling for Efficient Video Object
Detection [58.22508131162269]
We propose SALISA, a novel non-uniform SALiency-based Input SAmpling technique for video object detection.
We show that SALISA significantly improves the detection of small objects.
arXiv Detail & Related papers (2022-04-05T17:59:51Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Lite-FPN for Keypoint-based Monocular 3D Object Detection [18.03406686769539]
Keypoint-based monocular 3D object detection has made tremendous progress and achieved great speed-accuracy trade-off.
We propose a sort of lightweight feature pyramid network called Lite-FPN to achieve multi-scale feature fusion.
Our proposed method achieves significantly higher accuracy and frame rate at the same time.
arXiv Detail & Related papers (2021-05-01T14:44:31Z) - Achieving Real-Time LiDAR 3D Object Detection on a Mobile Device [53.323878851563414]
We propose a compiler-aware unified framework incorporating network enhancement and pruning search with the reinforcement learning techniques.
Specifically, a generator Recurrent Neural Network (RNN) is employed to provide the unified scheme for both network enhancement and pruning search automatically.
The proposed framework achieves real-time 3D object detection on mobile devices with competitive detection performance.
arXiv Detail & Related papers (2020-12-26T19:41:15Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.