Multi-Domain Data Aggregation for Axon and Myelin Segmentation in Histology Images
- URL: http://arxiv.org/abs/2409.11552v1
- Date: Tue, 17 Sep 2024 20:47:32 GMT
- Title: Multi-Domain Data Aggregation for Axon and Myelin Segmentation in Histology Images
- Authors: Armand Collin, Arthur Boschet, Mathieu Boudreau, Julien Cohen-Adad,
- Abstract summary: Quantifying axon and myelin properties in histology images can provide useful information about microstructural changes caused by neurodegenerative diseases.
Advances in deep learning have made this task quick and reliable with minimal overhead, but a deep learning model trained by one research group will hardly ever be usable by other groups.
There is a pressing need to make AI accessible to researchers to facilitate and accelerate their workflow, but publicly available models are scarce and poorly maintained.
Our approach is to aggregate data from multiple imaging modalities to create an open-source, durable tool for axon and myelin segmentation.
- Score: 0.5825410941577593
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantifying axon and myelin properties (e.g., axon diameter, myelin thickness, g-ratio) in histology images can provide useful information about microstructural changes caused by neurodegenerative diseases. Automatic tissue segmentation is an important tool for these datasets, as a single stained section can contain up to thousands of axons. Advances in deep learning have made this task quick and reliable with minimal overhead, but a deep learning model trained by one research group will hardly ever be usable by other groups due to differences in their histology training data. This is partly due to subject diversity (different body parts, species, genetics, pathologies) and also to the range of modern microscopy imaging techniques resulting in a wide variability of image features (i.e., contrast, resolution). There is a pressing need to make AI accessible to neuroscience researchers to facilitate and accelerate their workflow, but publicly available models are scarce and poorly maintained. Our approach is to aggregate data from multiple imaging modalities (bright field, electron microscopy, Raman spectroscopy) and species (mouse, rat, rabbit, human), to create an open-source, durable tool for axon and myelin segmentation. Our generalist model makes it easier for researchers to process their data and can be fine-tuned for better performance on specific domains. We study the benefits of different aggregation schemes. This multi-domain segmentation model performs better than single-modality dedicated learners (p=0.03077), generalizes better on out-of-distribution data and is easier to use and maintain. Importantly, we package the segmentation tool into a well-maintained open-source software ecosystem (see https://github.com/axondeepseg/axondeepseg).
Related papers
- Diffusion-based Data Augmentation for Nuclei Image Segmentation [68.28350341833526]
We introduce the first diffusion-based augmentation method for nuclei segmentation.
The idea is to synthesize a large number of labeled images to facilitate training the segmentation model.
The experimental results show that by augmenting 10% labeled real dataset with synthetic samples, one can achieve comparable segmentation results.
arXiv Detail & Related papers (2023-10-22T06:16:16Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
Mask image model (MIM) has been widely used due to its simplicity and effectiveness in recovering original information from masked images.
We propose a decision-based MIM that utilizes reinforcement learning (RL) to automatically search for optimal image masking ratio and masking strategy.
Our approach has a significant advantage over alternative self-supervised methods on the task of neuron segmentation.
arXiv Detail & Related papers (2023-10-06T10:40:46Z) - AMIGO: Sparse Multi-Modal Graph Transformer with Shared-Context
Processing for Representation Learning of Giga-pixel Images [53.29794593104923]
We present a novel concept of shared-context processing for whole slide histopathology images.
AMIGO uses the celluar graph within the tissue to provide a single representation for a patient.
We show that our model is strongly robust to missing information to an extent that it can achieve the same performance with as low as 20% of the data.
arXiv Detail & Related papers (2023-03-01T23:37:45Z) - Multiclass Semantic Segmentation to Identify Anatomical Sub-Regions of
Brain and Measure Neuronal Health in Parkinson's Disease [2.288652563296735]
Currently, a machine learning model to analyze sub-anatomical regions of the brain to analyze 2D histological images is not available.
In this study, we trained our best fit model on approximately one thousand annotated 2D brain images stained with Nissl/ Haematoxylin and Tyrosine Hydroxylase enzyme (TH, indicator of dopaminergic neuron viability)
The model effectively is able to detect two sub-regions compacta (SNCD) and reticulata (SNr) in all the images.
arXiv Detail & Related papers (2023-01-07T19:35:28Z) - One Model is All You Need: Multi-Task Learning Enables Simultaneous
Histology Image Segmentation and Classification [3.8725005247905386]
We present a multi-task learning approach for segmentation and classification of tissue regions.
We enable simultaneous prediction with a single network.
As a result of feature sharing, we also show that the learned representation can be used to improve downstream tasks.
arXiv Detail & Related papers (2022-02-28T20:22:39Z) - SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data
for Cancer Type Classification [4.992154875028543]
Integration and analysis of multi-omics data give us a broad view of tumours, which can improve clinical decision making.
SubOmiEmbed produces comparable results to the baseline OmiEmbed with a much smaller network and by using just a subset of the data.
This work can be improved to integrate mutation-based genomic data as well.
arXiv Detail & Related papers (2022-02-03T16:39:09Z) - Generation of microbial colonies dataset with deep learning style
transfer [0.0]
We introduce a strategy to generate a synthetic dataset of microbiological images of Petri dishes that can be used to train deep learning models.
We show that the method is able to synthesize a dataset of realistic looking images that can be used to train a neural network model capable of localising, segmenting, and classifying five different microbial species.
arXiv Detail & Related papers (2021-11-06T03:11:01Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z) - Cross-Domain Segmentation with Adversarial Loss and Covariate Shift for
Biomedical Imaging [2.1204495827342438]
This manuscript aims to implement a novel model that can learn robust representations from cross-domain data by encapsulating distinct and shared patterns from different modalities.
The tests on CT and MRI liver data acquired in routine clinical trials show that the proposed model outperforms all other baseline with a large margin.
arXiv Detail & Related papers (2020-06-08T07:35:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.