論文の概要: Basket-Enhanced Heterogenous Hypergraph for Price-Sensitive Next Basket Recommendation
- arxiv url: http://arxiv.org/abs/2409.11695v1
- Date: Wed, 18 Sep 2024 04:31:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 15:26:58.251976
- Title: Basket-Enhanced Heterogenous Hypergraph for Price-Sensitive Next Basket Recommendation
- Title(参考訳): Basket-Enhanced Heterogenous Hypergraph for Price-Sensitive Next Basket Recommendation (特集 バイオサイバネティックスとバイオサイバネティックス)
- Authors: Yuening Zhou, Yulin Wang, Qian Cui, Xinyu Guan, Francisco Cisternas,
- Abstract要約: Next Basket Recommendation (NBR)は、ユーザーが一緒に購入する可能性のあるアイテムの組み合わせを予測する新しいタイプのレコメンデーションシステムである。
既存のNBRモデルは、価格である重要な要素を見落としていることが多く、アイテムとバスケットボールのインタラクションを完全に捉えていない。
BDHH(Basket-augmented Dynamic Heterogeneous Hypergraph)と呼ばれる新しい手法を提案する。
- 参考スコア(独自算出の注目度): 15.226072390133846
- License:
- Abstract: Next Basket Recommendation (NBR) is a new type of recommender system that predicts combinations of items users are likely to purchase together. Existing NBR models often overlook a crucial factor, which is price, and do not fully capture item-basket-user interactions. To address these limitations, we propose a novel method called Basket-augmented Dynamic Heterogeneous Hypergraph (BDHH). BDHH utilizes a heterogeneous multi-relational graph to capture the intricate relationships among item features, with price as a critical factor. Moreover, our approach includes a basket-guided dynamic augmentation network that could dynamically enhances item-basket-user interactions. Experiments on real-world datasets demonstrate that BDHH significantly improves recommendation accuracy, providing a more comprehensive understanding of user behavior.
- Abstract(参考訳): Next Basket Recommendation (NBR)は、ユーザーが一緒に購入する可能性のあるアイテムの組み合わせを予測する新しいタイプのレコメンデーションシステムである。
既存のNBRモデルは、価格である重要な要素を見落としていることが多く、アイテムとバスケットボールのインタラクションを完全に捉えていない。
これらの制約に対処するため,BDH(Basket-augmented Dynamic Heterogeneous Hypergraph)と呼ばれる新しい手法を提案する。
BDHHは、不均一なマルチリレーショナルグラフを使用して、アイテムの特徴間の複雑な関係を、価格を重要な要因として捉えている。
さらに,本手法は,アイテム-バスケ-ユーザインタラクションを動的に強化する,バスケット誘導動的拡張ネットワークを含む。
実世界のデータセットの実験では、BDHHが推奨精度を大幅に改善し、ユーザの振る舞いをより包括的に理解することを示した。
関連論文リスト
- EDGE-Rec: Efficient and Data-Guided Edge Diffusion For Recommender Systems Graphs [0.0]
本稿では,ユーザとアイテムの機能だけでなく,リアルタイムなインタラクションの重み付けを生かした新しいアテンション機構を提案する。
我々は,ユーザ・イテム相互作用グラフの重み付き相互作用行列を反復的に復調するために,新しいグラフ拡散変換器GDiTアーキテクチャを訓練する。
テキスト条件付き画像生成の最近の進歩に触発されて,本手法は,従来の評価と同一スケールのユーザ・イテム評価を直接生成する。
論文 参考訳(メタデータ) (2024-09-23T03:23:20Z) - Leveraging Knowledge Graph Embedding for Effective Conversational Recommendation [4.079573593766921]
知識グラフに基づく会話推薦システム(KG-CRS参照)を提案する。
具体的には,まずユーザ・テムグラフとアイテム・アトリビュートグラフを動的グラフに統合し,否定的な項目や属性を除去することで対話プロセス中に動的に変化する。
次に、ユーザ、アイテム、属性の情報埋め込みを、グラフ上の隣人の伝播も考慮して学習する。
論文 参考訳(メタデータ) (2024-08-02T15:38:55Z) - Hypergraph Enhanced Knowledge Tree Prompt Learning for Next-Basket
Recommendation [50.55786122323965]
次バスケットレコメンデーション(NBR)は、対応するバスケットシーケンスが与えられた次のバスケット内のアイテムを推論することを目的としている。
HEKP4NBRは知識グラフ(KG)をKTP(Knowledge Tree Prompt)と呼ばれるプロンプトに変換し、PLMがOOV(Out-Of-Vocabulary)アイテムIDをエンコードするのを助ける。
ハイパーグラフ畳み込みモジュールは、複数の側面からMoEモデルによって測定されたアイテム類似性に基づいてハイパーグラフを構築するように設計されている。
論文 参考訳(メタデータ) (2023-12-26T02:12:21Z) - Hypergrah-Enhanced Dual Convolutional Network for Bundle Recommendation [10.08634397606628]
我々は、ハイパーグラフ強化デュアル畳み込みニューラルネットワーク(HED)と呼ばれるバンドルレコメンデーションのための統一モデルを開発する。
まず、ユーザ、アイテム、バンドル間のインタラクションのダイナミクスを捉えるための完全なハイパーグラフを構築し、続いてU-Bインタラクション情報を組み込んで、ユーザから派生した情報表現を強化し、組込みベクトルをバンドルする。
論文 参考訳(メタデータ) (2023-12-18T08:35:10Z) - GUESR: A Global Unsupervised Data-Enhancement with Bucket-Cluster
Sampling for Sequential Recommendation [58.6450834556133]
本研究では,グローバルな視点から複雑な関連性を持つ項目表現を強化するために,グラフコントラスト学習を提案する。
本稿では,CapsNetモジュールを拡張したターゲットアテンション機構により,ユーザの動的嗜好を導出する。
提案したGUESRは,大幅な改善を達成できただけでなく,汎用的な拡張戦略ともみなすことができた。
論文 参考訳(メタデータ) (2023-03-01T05:46:36Z) - Ordinal Graph Gamma Belief Network for Social Recommender Systems [54.9487910312535]
我々は,階層型ベイズモデルであるオーディナルグラフファクター解析(OGFA)を開発し,ユーザ・イテムとユーザ・ユーザインタラクションを共同でモデル化する。
OGFAは、優れたレコメンデーションパフォーマンスを達成するだけでなく、代表ユーザの好みに応じた解釈可能な潜在因子も抽出する。
我々はOGFAを,マルチ確率層深層確率モデルであるオーディナルグラフガンマ信念ネットワークに拡張する。
論文 参考訳(メタデータ) (2022-09-12T09:19:22Z) - Price DOES Matter! Modeling Price and Interest Preferences in
Session-based Recommendation [55.0391061198924]
セッションベースのレコメンデーションは、匿名ユーザが自分の短い行動シーケンスに基づいて購入したいアイテムを予測することを目的としている。
セッションベースのレコメンデーションの価格設定を組み込むのは簡単ではない。
セッションベースレコメンデーションのためのCoHHN(Co-guided Heterogeneous Hypergraph Network)を提案する。
論文 参考訳(メタデータ) (2022-05-09T10:47:15Z) - Multi-Behavior Enhanced Recommendation with Cross-Interaction
Collaborative Relation Modeling [42.6279077675585]
本稿では,グラフニューラルマルチビヘイビア拡張レコメンデーションフレームワークを提案する。
グラフベースのメッセージパッシングアーキテクチャの下で、異なるタイプのユーザ-テムインタラクション間の依存関係を明示的にモデル化します。
実世界のレコメンデーションデータセットの実験は、GNMRが最先端の手法を一貫して上回っていることを示している。
論文 参考訳(メタデータ) (2022-01-07T03:12:37Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendation Describes a set of technique to model dynamic user behavior to order to predict future interaction in sequence user data。
データスパーシリティやノイズの多いデータなど、古くて新しい問題はまだ残っている。
逐次レコメンデーション(CoSeRec)のためのコントラスト型自己監督学習を提案する。
論文 参考訳(メタデータ) (2021-08-14T07:15:25Z) - Dynamic Graph Collaborative Filtering [64.87765663208927]
動的レコメンデーションは,逐次データに基づくリアルタイム予測を提供するレコメンデータシステムにとって不可欠である。
本稿では、動的グラフを利用して協調関係とシーケンシャル関係をキャプチャする新しいフレームワーク、Dynamic Graph Collaborative Filtering (DGCF)を提案する。
提案手法は, 動的協調情報の統合の有効性を示すため, 動作繰り返しの少ないデータセットでは高い性能を実現する。
論文 参考訳(メタデータ) (2021-01-08T04:16:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。