論文の概要: TART: An Open-Source Tool-Augmented Framework for Explainable Table-based Reasoning
- arxiv url: http://arxiv.org/abs/2409.11724v1
- Date: Wed, 18 Sep 2024 06:19:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 19:00:08.067161
- Title: TART: An Open-Source Tool-Augmented Framework for Explainable Table-based Reasoning
- Title(参考訳): TART: 説明可能なテーブルベースの推論のためのオープンソースのツール拡張フレームワーク
- Authors: Xinyuan Lu, Liangming Pan, Yubo Ma, Preslav Nakov, Min-Yen Kan,
- Abstract要約: 現在のLarge Language Models (LLM) は、テーブル構造を理解し、正確な数値推論を適用する能力に制限がある。
LLMと特殊なツールを統合するTART(Tool-Augmented Reasoning framework for Tables)を紹介した。
TARTには、正確なデータ表現を保証するテーブルフォーマッター、特定の計算ツールを開発するツールメーカー、説明可能性を維持するための説明ジェネレータの3つの重要なコンポーネントが含まれている。
- 参考スコア(独自算出の注目度): 61.14586098005874
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current Large Language Models (LLMs) exhibit limited ability to understand table structures and to apply precise numerical reasoning, which is crucial for tasks such as table question answering (TQA) and table-based fact verification (TFV). To address these challenges, we introduce our Tool-Augmented Reasoning framework for Tables (TART), which integrates LLMs with specialized tools. TART contains three key components: a table formatter to ensure accurate data representation, a tool maker to develop specific computational tools, and an explanation generator to maintain explainability. We also present the TOOLTAB dataset, a new benchmark designed specifically for training LLMs in table-tool integration. Our experiments indicate that TART achieves substantial improvements over existing methods (e.g., Chain-of-Thought) by improving both the precision of data processing and the clarity of the reasoning process. Notably, TART paired with CodeLlama achieves 90.0% of the accuracy of the closed-sourced LLM GPT-3.5-turbo, highlighting its robustness in diverse real-world scenarios. All the code and data are available at https://github.com/XinyuanLu00/TART.
- Abstract(参考訳): 現在のLarge Language Models (LLMs) は、テーブル構造を理解し、正確な数値推論を適用する能力に限界があり、これはテーブル質問応答(TQA)やテーブルベースの事実検証(TFV)といったタスクに不可欠である。
これらの課題に対処するために、特殊なツールとLLMを統合するTART(Tool-Augmented Reasoning framework for Tables)を紹介します。
TARTには、正確なデータ表現を保証するテーブルフォーマッター、特定の計算ツールを開発するツールメーカー、説明可能性を維持するための説明ジェネレータの3つの重要なコンポーネントが含まれている。
また、テーブル-ツール統合におけるLLMのトレーニングに特化して設計された新しいベンチマークであるTOOLTABデータセットも提示する。
実験の結果,データ処理の精度と推論プロセスの明確さを両立させることにより,既存の手法(例えばChain-of-Thought)よりも大幅に改善できることが示唆された。
特に、CodeLlamaと組み合わせたTARTは、クローズドソースのLCM GPT-3.5-turboの精度の90.0%を達成し、さまざまな実世界のシナリオにおける堅牢性を強調している。
すべてのコードとデータはhttps://github.com/XinyuanLu00/TARTで入手できる。
関連論文リスト
- TableRAG: Million-Token Table Understanding with Language Models [53.039560091592215]
TableRAG(TableRAG)は、LMベースのテーブル理解用に特別に設計された検索拡張生成(RAG)フレームワークである。
TableRAGは、スキーマとセル検索を組み合わせたクエリ拡張を活用して、LMにそれを提供する前に重要な情報をピンポイントする。
以上の結果から,TableRAGは検索精度が向上し,大規模テーブル理解における最先端性能が向上することが示唆された。
論文 参考訳(メタデータ) (2024-10-07T04:15:02Z) - Knowledge in Triples for LLMs: Enhancing Table QA Accuracy with Semantic Extraction [1.0968343822308813]
本稿では,表型データから直交三重項を抽出し,それを検索拡張生成(RAG)モデルに統合することにより,微調整GPT-3.5-turbo-0125モデルにより生成された応答の精度,コヒーレンス,コンテキスト的リッチ性を向上させる手法を提案する。
FeTaQAデータセットの既存のベースライン、特にSacre-BLEUとROUGEの指標に優れています。
論文 参考訳(メタデータ) (2024-09-21T16:46:15Z) - AvaTaR: Optimizing LLM Agents for Tool Usage via Contrastive Reasoning [93.96463520716759]
大規模言語モデル(LLM)エージェントは、精度と幻覚を高めるために外部ツールと知識を活用する際、印象的な能力を示した。
本稿では、LLMエージェントを最適化して提供されたツールを効果的に活用し、与えられたタスクのパフォーマンスを向上させる新しい自動化フレームワークであるAvaTaRを紹介する。
論文 参考訳(メタデータ) (2024-06-17T04:20:02Z) - Generating Tables from the Parametric Knowledge of Language Models [6.316194671269148]
大規模言語モデル(LLM)のパラメトリック知識から表を生成することを検討する。
GPT-3.5, GPT-4, Llama2-13B, Llama2-70Bの表生成能力について検討した。
評価のために、100のキュレートされたウィキペディアテーブルを含む新しいベンチマークWikiTabGenを導入する。
論文 参考訳(メタデータ) (2024-06-16T12:55:55Z) - TACT: Advancing Complex Aggregative Reasoning with Information Extraction Tools [51.576974932743596]
大規模言語モデル(LLM)は、テキスト間の情報の集約を必要とするクエリではよく機能しないことが多い。
TACTには、1つ以上のテキストに散らばる縫合情報を要求する難しい命令が含まれている。
既存のテキストと関連するテーブルのデータセットを活用することで、このデータセットを構築します。
現代のLLMはいずれも,このデータセットでは性能が悪く,精度が38%以下であることが実証された。
論文 参考訳(メタデータ) (2024-06-05T20:32:56Z) - TableLLM: Enabling Tabular Data Manipulation by LLMs in Real Office Usage Scenarios [52.73289223176475]
TableLLMは、13億のパラメータを持つ堅牢な大規模言語モデル(LLM)である。
TableLLMはデータ操作タスクを巧みに扱うために構築されている。
我々は、ユーザインタラクションのためのモデルチェックポイント、ソースコード、ベンチマーク、Webアプリケーションをリリースした。
論文 参考訳(メタデータ) (2024-03-28T11:21:12Z) - TAP4LLM: Table Provider on Sampling, Augmenting, and Packing Semi-structured Data for Large Language Model Reasoning [55.33939289989238]
テーブルベースタスクにおいて,大規模言語モデル(LLM)を効果的に活用するための汎用プリプロセッサスイートとして,TAP4LLMを提案する。
1)大きなテーブルをクエリセマンティクスに基づいて管理可能なサブテーブルに分解するテーブルサンプリング、(2)外部ソースやモデルから追加の知識でテーブルを拡張するテーブル拡張、(3)テーブルパッキングとシリアライゼーションによりテーブルをLLMの理解に適したさまざまなフォーマットに変換する。
論文 参考訳(メタデータ) (2023-12-14T15:37:04Z) - TableQAKit: A Comprehensive and Practical Toolkit for Table-based
Question Answering [23.412691101965414]
TableQAKitは、TableQA専用に設計された最初の総合ツールキットである。
TableQAKitは、ビジュアル操作を含むインタラクティブなインターフェースと、使いやすい包括的なデータを備えたオープンソースである。
論文 参考訳(メタデータ) (2023-10-23T16:33:23Z) - TableGPT: Towards Unifying Tables, Nature Language and Commands into One
GPT [19.57099486334867]
TableGPTは、大きな言語モデル(LLM)が外部機能コマンドを使用してテーブル上で理解し、操作できるようにするフレームワークである。
TableGPTは、ユーザに対して、テーブルデータを活用することによって、利便性とアクセシビリティを提供することを目的としている。
論文 参考訳(メタデータ) (2023-07-17T17:36:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。