論文の概要: NPAT Null-Space Projected Adversarial Training Towards Zero Deterioration
- arxiv url: http://arxiv.org/abs/2409.11754v1
- Date: Wed, 18 Sep 2024 07:18:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 18:48:44.741198
- Title: NPAT Null-Space Projected Adversarial Training Towards Zero Deterioration
- Title(参考訳): NPAT Null-Space Projected Adversarial Training to Zero Deterioration
- Authors: Hanyi Hu, Qiao Han, Kui Chen, Yao Yang,
- Abstract要約: サンプル生成と勾配最適化を扱う2つの革新的なNull-space Projection based Adversarial Training(NPAT)アルゴリズムを提案する。
提案手法は,高精度モデルに近づきながら,敵対的トレーニング手法とシームレスに結合し,同等の堅牢性が得られることを示す。
- 参考スコア(独自算出の注目度): 1.7250254048907498
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: To mitigate the susceptibility of neural networks to adversarial attacks, adversarial training has emerged as a prevalent and effective defense strategy. Intrinsically, this countermeasure incurs a trade-off, as it sacrifices the model's accuracy in processing normal samples. To reconcile the trade-off, we pioneer the incorporation of null-space projection into adversarial training and propose two innovative Null-space Projection based Adversarial Training(NPAT) algorithms tackling sample generation and gradient optimization, named Null-space Projected Data Augmentation (NPDA) and Null-space Projected Gradient Descent (NPGD), to search for an overarching optimal solutions, which enhance robustness with almost zero deterioration in generalization performance. Adversarial samples and perturbations are constrained within the null-space of the decision boundary utilizing a closed-form null-space projector, effectively mitigating threat of attack stemming from unreliable features. Subsequently, we conducted experiments on the CIFAR10 and SVHN datasets and reveal that our methodology can seamlessly combine with adversarial training methods and obtain comparable robustness while keeping generalization close to a high-accuracy model.
- Abstract(参考訳): 敵の攻撃に対するニューラルネットワークの感受性を緩和するために、敵の訓練が一般的で効果的な防衛戦略として登場した。
本質的に、この対策は、通常のサンプルを処理する際のモデルの精度を犠牲にするため、トレードオフを引き起こします。
そこで我々は,Null-space Projected Data Augmentation (NPDA) とNull-space Projected Gradient Descent (NPGD) という2つの革新的なNull-space Projection based Adversarial Training (NPAT) アルゴリズムを提案する。
逆サンプルと摂動は、閉形式ヌル空間プロジェクタを用いて決定境界のヌル空間内に制約され、信頼できない特徴から生じる攻撃の脅威を効果的に軽減する。
その後、CIFAR10とSVHNデータセットの実験を行い、我々の方法論が敵の訓練手法とシームレスに結合し、高精度モデルに近い一般化を維持しつつ、同等の堅牢性を得ることができることを示した。
関連論文リスト
- HUWSOD: Holistic Self-training for Unified Weakly Supervised Object Detection [66.42229859018775]
我々は,HUWSOD(HuWSOD)と呼ばれる,統一・高容量弱教師付きオブジェクト検出(WSOD)ネットワークを導入する。
HUWSODには、自己管理された提案生成器と、従来のオブジェクト提案を置き換えるために、マルチレートで再構成されたピラミッドを備えたオートエンコーダ提案生成器が組み込まれている。
提案手法は,よく設計されたオフラインオブジェクト提案と大きく異なるが,WSOD訓練には有効であることを示す。
論文 参考訳(メタデータ) (2024-06-27T17:59:49Z) - Enhancing Adversarial Robustness via Score-Based Optimization [22.87882885963586]
敵対的攻撃は、わずかな摂動を導入することによって、ディープニューラルネットワーク分類器を誤認する可能性がある。
ScoreOptと呼ばれる新しい対向防御方式を導入し、テスト時に対向サンプルを最適化する。
実験の結果,本手法は性能とロバスト性の両方において,既存の敵防御よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-07-10T03:59:42Z) - Adversarial Training Should Be Cast as a Non-Zero-Sum Game [121.95628660889628]
対人訓練の2つのプレイヤーゼロサムパラダイムは、十分な強靭性を発揮できていない。
敵のトレーニングアルゴリズムでよく使われるサロゲートベースの緩和は、ロバスト性に関するすべての保証を無効にすることを示す。
対人訓練の新たな非ゼロサム二段階の定式化は、一致し、場合によっては最先端の攻撃よりも優れたフレームワークをもたらす。
論文 参考訳(メタデータ) (2023-06-19T16:00:48Z) - Interpolated Joint Space Adversarial Training for Robust and
Generalizable Defenses [82.3052187788609]
敵の訓練(AT)は、敵の攻撃に対する最も信頼できる防御の1つと考えられている。
近年の研究では、新たな脅威モデルの下での対向サンプルによる一般化の改善が示されている。
我々は、JSTM(Joint Space Threat Model)と呼ばれる新しい脅威モデルを提案する。
JSTMでは,新たな敵攻撃・防衛手法が開発されている。
論文 参考訳(メタデータ) (2021-12-12T21:08:14Z) - Improving White-box Robustness of Pre-processing Defenses via Joint Adversarial Training [106.34722726264522]
対向騒音の干渉を軽減するため,様々な対向防御技術が提案されている。
プレプロセス法は、ロバストネス劣化効果に悩まされることがある。
この負の効果の潜在的な原因は、敵の訓練例が静的であり、前処理モデルとは独立していることである。
本稿では,JATP(Joint Adversarial Training Based Pre-processing)防衛法を提案する。
論文 参考訳(メタデータ) (2021-06-10T01:45:32Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
本稿では,属性空間への分類器の露出を最大化するために,新しいサンプルを生成することを学習する逆学習手法を提案する。
我々のアプローチは、ディープニューラルネットワークが自然に発生する摂動に対して堅牢であることを可能にする。
論文 参考訳(メタデータ) (2020-12-03T10:17:30Z) - Regularization with Latent Space Virtual Adversarial Training [4.874780144224057]
VAT(Virtual Adversarial Training)は,最近開発された正規化手法において顕著な結果を示した。
入力空間の代わりに潜在空間の摂動を注入するLVATを提案する。
LVATは反対のサンプルを柔軟に生成することができ、より有害な効果をもたらし、より効果的な正則化をもたらす。
論文 参考訳(メタデータ) (2020-11-26T08:51:38Z) - Adversarially Robust Learning via Entropic Regularization [31.6158163883893]
我々は、敵対的に堅牢なディープニューラルネットワークを訓練するための新しいアルゴリズムATENTを提案する。
我々の手法は、頑健な分類精度の観点から、競争力(またはより良い)性能を達成する。
論文 参考訳(メタデータ) (2020-08-27T18:54:43Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
逆行訓練(AT)は、逆行例によるトレーニングデータを増やすことにより、モデルロバスト性を改善する最も効果的な手法の一つである。
既存のAT手法の多くは、敵の例を作らせるために特定の攻撃を採用しており、他の目に見えない攻撃に対する信頼性の低い堅牢性につながっている。
本稿では,ロバストモデル学習のための新しいフレームワークであるADTを紹介する。
論文 参考訳(メタデータ) (2020-02-14T12:36:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。