論文の概要: A Study on Adversarial Robustness of Discriminative Prototypical Learning
- arxiv url: http://arxiv.org/abs/2504.03782v1
- Date: Thu, 03 Apr 2025 15:42:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:13:49.916467
- Title: A Study on Adversarial Robustness of Discriminative Prototypical Learning
- Title(参考訳): 差別的原型学習における対人ロバスト性に関する研究
- Authors: Ramin Zarei Sabzevar, Hamed Mohammadzadeh, Tahmineh Tavakoli, Ahad Harati,
- Abstract要約: 本稿では,Adv-DPNP (Adversarial Deep Positive-Negative Prototypes) という新たな対人訓練フレームワークを提案する。
Adv-DPNPは、差別的なプロトタイプベースの学習と敵の訓練を統合している。
提案手法では, 正の試作アライメント, 負の試作反発, 整合正則化を組み合わせた複合損失関数を用いる。
- 参考スコア(独自算出の注目度): 0.24999074238880484
- License:
- Abstract: Deep neural networks demonstrate significant vulnerability to adversarial perturbations, posing risks for critical applications. Current adversarial training methods predominantly focus on robustness against attacks without explicitly leveraging geometric structures in the latent space, usually resulting in reduced accuracy on the original clean data. To address these issues, we propose a novel adversarial training framework named Adversarial Deep Positive-Negative Prototypes (Adv-DPNP), which integrates disriminative prototype-based learning with adversarial training. Adv-DPNP uses unified class prototypes serving dual roles as classifier weights and robust anchors, enhancing both intra-class compactness and inter-class separation in the latent space. Moreover, a novel dual-branch training mechanism maintains stable prototypes by updating them exclusively with clean data; while the feature extractor layers are learned using both clean and adversarial data to remain invariant against adversarial perturbations. In addition, our approach utilizes a composite loss function combining positive prototype alignment, negative prototype repulsion, and consistency regularization to further enhance discrimination, adversarial robustness, and clean accuracy. Extensive experiments conducted on standard benchmark datasets confirm the effectiveness of Adv-DPNP compared to state-of-the-art methods, achieving higher clean accuracy and competitive robustness under adversarial perturbations and common corruptions. Our code is available at https://github.com/fum-rpl/adv-dpnp
- Abstract(参考訳): ディープニューラルネットワークは、敵の摂動に重大な脆弱性を示し、重要なアプリケーションにリスクを及ぼす。
現在の敵の訓練方法は、主に潜伏空間における幾何学的構造を明示的に活用することなく攻撃に対する堅牢性に焦点を合わせ、通常は元のクリーンデータに対して精度を低下させる。
これらの課題に対処するために, 差別的プロトタイプベース学習と敵対的学習を統合した, Adversarial Deep Positive-Negative Prototypes (Adv-DPNP) という, 新たな敵対的学習フレームワークを提案する。
Adv-DPNPは、分類器重みと頑健なアンカーとして二重の役割を果たす統一型クラスプロトタイプを使用し、クラス内コンパクト性と潜在空間におけるクラス間分離の両方を強化している。
さらに、新しい二重ブランチトレーニング機構は、クリーンデータのみで更新することで安定したプロトタイプを維持し、一方、特徴抽出器層は、クリーンデータと逆データの両方を用いて学習し、敵の摂動に対して不変である。
さらに, 正の原型アライメント, 負の原型反発, 整合正則化を組み合わせた複合損失関数を用いて, 識別, 対向ロバスト性, クリーンな精度の向上を図る。
標準ベンチマークで実施した広範囲な実験により,Adv-DPNPの有効性が確認された。
私たちのコードはhttps://github.com/fum-rpl/adv-dpnpで利用可能です。
関連論文リスト
- MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning [1.534667887016089]
ディープニューラルネットワーク(DNN)は、わずかに敵対的な摂動に対して脆弱である。
トレーニング中の強力な特徴表現学習は、元のモデルの堅牢性を大幅に向上させることができることを示す。
本稿では,多目的特徴表現学習手法であるMORELを提案する。
論文 参考訳(メタデータ) (2024-10-02T16:05:03Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
本稿では,2重のインスタンス再重み付き対向フレームワークを提案する。
KL偏差正規化損失関数の最適化により重みを求める。
提案手法は, 平均ロバスト性能において, 最先端のベースライン法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-08-01T06:16:18Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
本稿では,様々な分類タスクにおいて,逆向きに事前訓練されたモデルの微調整に焦点を当てる。
本稿では,TWINS(Two-WIng NormliSation)ファインチューニングフレームワークを提案する。
TWINSは、一般化とロバスト性の両方の観点から、幅広い画像分類データセットに有効であることが示されている。
論文 参考訳(メタデータ) (2023-03-20T14:12:55Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
対向ロバスト性の標準的な方法は、サンプルを最小に摂動させることによって作られたサンプルに対して防御する枠組みを仮定する。
距離学習を用いて、最適輸送問題として逆正則化をフレーム化する。
予備的な結果から, 変分摂動の規則化は, 変分防御と敏感防御の両方を改善することが示唆された。
論文 参考訳(メタデータ) (2022-11-04T13:54:02Z) - Resisting Adversarial Attacks in Deep Neural Networks using Diverse
Decision Boundaries [12.312877365123267]
深層学習システムは、人間の目には認識できないが、モデルが誤分類される可能性がある、人工的な敵の例に弱い。
我々は,オリジナルモデルに対する多様な決定境界を持つディフェンダーモデルを構築するための,アンサンブルに基づく新しいソリューションを開発した。
我々は、MNIST、CIFAR-10、CIFAR-100といった標準画像分類データセットを用いて、最先端の敵攻撃に対する広範な実験を行った。
論文 参考訳(メタデータ) (2022-08-18T08:19:26Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
現在のディープニューラルネットワーク(DNN)は、入力に対する敵の摂動が分類を変更したり操作したりする敵の攻撃に対して脆弱である。
このような攻撃を防御するために、敵の訓練(AT)として知られる効果的なアプローチが、堅牢な訓練を緩和するために示されている。
複数のマシンにまたがって実装された大規模バッチ対逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-13T15:39:43Z) - Robustness through Cognitive Dissociation Mitigation in Contrastive
Adversarial Training [2.538209532048867]
本稿では,新たなニューラルネットワークトレーニングフレームワークを提案する。
本稿では,データ拡張と対向的摂動の両面に一貫性のある特徴表現を学習することで,敵攻撃に対するモデルロバスト性を改善することを提案する。
我々は,CIFAR-10データセットを用いて,教師付きおよび自己教師付き対向学習法よりも頑健な精度とクリーンな精度を両立させる手法を検証する。
論文 参考訳(メタデータ) (2022-03-16T21:41:27Z) - Mitigating the Impact of Adversarial Attacks in Very Deep Networks [10.555822166916705]
Deep Neural Network (DNN)モデルにはセキュリティに関する脆弱性がある。
データ中毒による摂動攻撃は、モデルに偽データを注入する複雑な敵対攻撃である。
そこで本研究では,攻撃に依存しない防御手法を提案する。
論文 参考訳(メタデータ) (2020-12-08T21:25:44Z) - Robust Pre-Training by Adversarial Contrastive Learning [120.33706897927391]
近年の研究では、敵の訓練と統合されると、自己監督型事前訓練が最先端の堅牢性につながることが示されている。
我々は,データ強化と対向的摂動の両面に整合した学習表現により,ロバストネスを意識した自己指導型事前学習を改善する。
論文 参考訳(メタデータ) (2020-10-26T04:44:43Z) - FADER: Fast Adversarial Example Rejection [19.305796826768425]
近年の防御は, 異なる層表現における正統な訓練試料からの異常な偏差を検出することにより, 対向的堅牢性を向上させることが示されている。
本稿では,検出に基づく手法を高速化する新しい手法であるFADERを紹介する。
実験では,MNISTデータセットの解析値と比較すると,最大73倍の試作機,CIFAR10の最大50倍の試作機について概説した。
論文 参考訳(メタデータ) (2020-10-18T22:00:11Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
既存の対数学習アプローチは、主にクラスラベルを使用して、誤った予測につながる対数サンプルを生成する。
本稿では,未ラベルデータに対する新たな逆攻撃を提案する。これにより,モデルが摂動データサンプルのインスタンスレベルのアイデンティティを混乱させる。
ラベル付きデータなしで頑健なニューラルネットワークを逆さまにトレーニングするための,自己教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-13T08:24:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。