NT-ViT: Neural Transcoding Vision Transformers for EEG-to-fMRI Synthesis
- URL: http://arxiv.org/abs/2409.11836v1
- Date: Wed, 18 Sep 2024 09:38:08 GMT
- Title: NT-ViT: Neural Transcoding Vision Transformers for EEG-to-fMRI Synthesis
- Authors: Romeo Lanzino, Federico Fontana, Luigi Cinque, Francesco Scarcello, Atsuto Maki,
- Abstract summary: This paper introduces the Neural Transcoding Vision Transformer (modelname)
modelname is a generative model designed to estimate high-resolution functional Magnetic Resonance Imaging (fMRI) samples from simultaneous Electroencephalography (EEG) data.
- Score: 7.542742087154667
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces the Neural Transcoding Vision Transformer (\modelname), a generative model designed to estimate high-resolution functional Magnetic Resonance Imaging (fMRI) samples from simultaneous Electroencephalography (EEG) data. A key feature of \modelname is its Domain Matching (DM) sub-module which effectively aligns the latent EEG representations with those of fMRI volumes, enhancing the model's accuracy and reliability. Unlike previous methods that tend to struggle with fidelity and reproducibility of images, \modelname addresses these challenges by ensuring methodological integrity and higher-quality reconstructions which we showcase through extensive evaluation on two benchmark datasets; \modelname outperforms the current state-of-the-art by a significant margin in both cases, e.g. achieving a $10\times$ reduction in RMSE and a $3.14\times$ increase in SSIM on the Oddball dataset. An ablation study also provides insights into the contribution of each component to the model's overall effectiveness. This development is critical in offering a new approach to lessen the time and financial constraints typically linked with high-resolution brain imaging, thereby aiding in the swift and precise diagnosis of neurological disorders. Although it is not a replacement for actual fMRI but rather a step towards making such imaging more accessible, we believe that it represents a pivotal advancement in clinical practice and neuroscience research. Code is available at \url{https://github.com/rom42pla/ntvit}.
Related papers
- Unifying Subsampling Pattern Variations for Compressed Sensing MRI with Neural Operators [72.79532467687427]
Compressed Sensing MRI reconstructs images of the body's internal anatomy from undersampled and compressed measurements.
Deep neural networks have shown great potential for reconstructing high-quality images from highly undersampled measurements.
We propose a unified model that is robust to different subsampling patterns and image resolutions in CS-MRI.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Unveiling Incomplete Modality Brain Tumor Segmentation: Leveraging Masked Predicted Auto-Encoder and Divergence Learning [6.44069573245889]
Brain tumor segmentation remains a significant challenge, particularly in the context of multi-modal magnetic resonance imaging (MRI)
We propose a novel strategy, which is called masked predicted pre-training, enabling robust feature learning from incomplete modality data.
In the fine-tuning phase, we utilize a knowledge distillation technique to align features between complete and missing modality data, simultaneously enhancing model robustness.
arXiv Detail & Related papers (2024-06-12T20:35:16Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
This study proposes a novel Siamese Dual-Resolution Transformer (SDR-Former) framework for liver lesion classification.
The proposed framework has been validated through comprehensive experiments on two clinical datasets.
To support the scientific community, we are releasing our extensive multi-phase MR dataset for liver lesion analysis to the public.
arXiv Detail & Related papers (2024-02-27T06:32:56Z) - A Compact Implicit Neural Representation for Efficient Storage of
Massive 4D Functional Magnetic Resonance Imaging [14.493622422645053]
fMRI compressing poses unique challenges due to its intricate temporal dynamics, low signal-to-noise ratio, and complicated underlying redundancies.
This paper reports a novel compression paradigm specifically tailored for fMRI data based on Implicit Neural Representation (INR)
arXiv Detail & Related papers (2023-11-30T05:54:37Z) - Leveraging sinusoidal representation networks to predict fMRI signals
from EEG [3.3121941932506473]
We propose a novel architecture that can predict fMRI signals directly from multi-channel EEG without explicit feature engineering.
Our model achieves this by implementing a Sinusoidal Representation Network (SIREN) to learn frequency information in brain dynamics.
We evaluate our model using a simultaneous EEG-fMRI dataset with 8 subjects and investigate its potential for predicting subcortical fMRI signals.
arXiv Detail & Related papers (2023-11-06T03:16:18Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
We propose fMRI-PTE, an innovative auto-encoder approach for fMRI pre-training.
Our approach involves transforming fMRI signals into unified 2D representations, ensuring consistency in dimensions and preserving brain activity patterns.
Our contributions encompass introducing fMRI-PTE, innovative data transformation, efficient training, a novel learning strategy, and the universal applicability of our approach.
arXiv Detail & Related papers (2023-11-01T07:24:22Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Multiscale Metamorphic VAE for 3D Brain MRI Synthesis [5.060516201839319]
Generative modeling of 3D brain MRIs presents difficulties in achieving high visual fidelity while ensuring sufficient coverage of the data distribution.
In this work, we propose to address this challenge with composable, multiscale morphological transformations in a variational autoencoder framework.
We show substantial performance improvements in FID while retaining comparable, or superior, reconstruction quality compared to prior work based on VAEs and generative adversarial networks (GANs)
arXiv Detail & Related papers (2023-01-09T09:15:30Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - MIST GAN: Modality Imputation Using Style Transfer for MRI [0.49172272348627766]
We formulate generating the missing MR modality from existing MR modalities as an imputation problem using style transfer.
With a multiple-to-one mapping, we model a network that accommodates domain specific styles in generating the target image.
Our model is tested on the BraTS'18 dataset and the results are observed to be on par with the state-of-the-art in terms of visual metrics.
arXiv Detail & Related papers (2022-02-21T17:50:40Z) - Lesion Mask-based Simultaneous Synthesis of Anatomic and MolecularMR
Images using a GAN [59.60954255038335]
The proposed framework consists of a stretch-out up-sampling module, a brain atlas encoder, a segmentation consistency module, and multi-scale label-wise discriminators.
Experiments on real clinical data demonstrate that the proposed model can perform significantly better than the state-of-the-art synthesis methods.
arXiv Detail & Related papers (2020-06-26T02:50:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.