Discovery of Quasi-Integrable Equations from traveling-wave data using the Physics-Informed Neural Networks
- URL: http://arxiv.org/abs/2410.19014v2
- Date: Mon, 28 Oct 2024 22:59:26 GMT
- Title: Discovery of Quasi-Integrable Equations from traveling-wave data using the Physics-Informed Neural Networks
- Authors: A. Nakamula, N. Sawado, K. Shimasaki, Y. Shimazaki, Y. Suzuki, K. Toda,
- Abstract summary: PINNs are used to study vortex solutions in 2+1 dimensional nonlinear partial differential equations.
We consider PINNs with conservation laws (referred to as cPINNs), deformations of the initial profiles, and a friction approach to improve the identification's resolution.
- Score: 0.0
- License:
- Abstract: Physics-Informed Neural Networks (PINNs) are used to study vortex solutions in the 2+1 dimensional nonlinear partial differential equations. These solutions include the regularized long-wave (RLW) equation and the Zakharov-Kuznetsov (ZK) equation, which are toy models of the geostrophic shallow water model in the planetary atmosphere. PINNs successfully solve these equations in the forward process and the solutions are obtained using the mesh-free approach and automatic differentiation while accounting for conservation laws. In the inverse process, the proper equations can be successfully derived from a given training data. Since these equations have a lot in common, there are situations when substantial misidentification arises during the inverse analysis. We consider PINNs with conservation laws (referred to as cPINNs), deformations of the initial profiles, and a friction approach that provides excellent discrimination of the equations to improve the identification's resolution.
Related papers
- Coupled Integral PINN for conservation law [1.9720482348156743]
The Physics-Informed Neural Network (PINN) is an innovative approach to solve a diverse array of partial differential equations.
This paper introduces a novel Coupled Integrated PINN methodology that involves fitting the integral solutions equations using additional neural networks.
arXiv Detail & Related papers (2024-11-18T04:32:42Z) - An efficient wavelet-based physics-informed neural networks for singularly perturbed problems [0.0]
Physics-informed neural networks (PINNs) are a class of deep learning models that utilize physics as differential equations.
We present an efficient wavelet-based PINNs model to solve singularly perturbed differential equations.
The architecture allows the training process to search for a solution within wavelet space, making the process faster and more accurate.
arXiv Detail & Related papers (2024-09-18T10:01:37Z) - Transformed Physics-Informed Neural Networks for The Convection-Diffusion Equation [0.0]
Singularly perturbed problems have solutions with steep boundary layers that are hard to resolve numerically.
Traditional numerical methods, such as Finite Difference Methods, require a refined mesh to obtain stable and accurate solutions.
We consider the use of Physics-Informed Neural Networks (PINNs) to produce numerical solutions of singularly perturbed problems.
arXiv Detail & Related papers (2024-09-12T00:24:21Z) - FEM-based Neural Networks for Solving Incompressible Fluid Flows and Related Inverse Problems [41.94295877935867]
numerical simulation and optimization of technical systems described by partial differential equations is expensive.
A comparatively new approach in this context is to combine the good approximation properties of neural networks with the classical finite element method.
In this paper, we extend this approach to saddle-point and non-linear fluid dynamics problems, respectively.
arXiv Detail & Related papers (2024-09-06T07:17:01Z) - Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
We propose Neural Walk-on-Spheres (NWoS), a novel neural PDE solver for the efficient solution of high-dimensional Poisson equations.
We demonstrate the superiority of NWoS in accuracy, speed, and computational costs.
arXiv Detail & Related papers (2024-06-05T17:59:22Z) - Physics-constrained convolutional neural networks for inverse problems in spatiotemporal partial differential equations [4.266376725904727]
We propose a physics-constrained convolutional neural network (PCCNN) to solve two types of inverse problems in partial differential equations (PDEs)
In the first inverse problem, we are given data that is offset from the biased data.
In the second inverse problem, we are given information on the solution of PDE.
We find that the PC-CNN correctly recovers the true solution for a variety of biases.
arXiv Detail & Related papers (2024-01-18T13:51:48Z) - Physics-Informed Neural Network Method for Parabolic Differential
Equations with Sharply Perturbed Initial Conditions [68.8204255655161]
We develop a physics-informed neural network (PINN) model for parabolic problems with a sharply perturbed initial condition.
Localized large gradients in the ADE solution make the (common in PINN) Latin hypercube sampling of the equation's residual highly inefficient.
We propose criteria for weights in the loss function that produce a more accurate PINN solution than those obtained with the weights selected via other methods.
arXiv Detail & Related papers (2022-08-18T05:00:24Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
We propose an approach to solving partial differential equations (PDEs) using a set of neural networks.
We regress a set of neural networks onto a reduced order Proper Orthogonal Decomposition (POD) basis.
These networks are then used in combination with a branch network that ingests the parameters of the prescribed PDE to compute a reduced order approximation to the PDE.
arXiv Detail & Related papers (2022-08-02T18:27:13Z) - Deep Random Vortex Method for Simulation and Inference of Navier-Stokes
Equations [69.5454078868963]
Navier-Stokes equations are significant partial differential equations that describe the motion of fluids such as liquids and air.
With the development of AI techniques, several approaches have been designed to integrate deep neural networks in simulating and inferring the fluid dynamics governed by incompressible Navier-Stokes equations.
We propose the emphDeep Random Vortex Method (DRVM), which combines the neural network with a random vortex dynamics system equivalent to the Navier-Stokes equation.
arXiv Detail & Related papers (2022-06-20T04:58:09Z) - Learning to Solve PDE-constrained Inverse Problems with Graph Networks [51.89325993156204]
In many application domains across science and engineering, we are interested in solving inverse problems with constraints defined by a partial differential equation (PDE)
Here we explore GNNs to solve such PDE-constrained inverse problems.
We demonstrate computational speedups of up to 90x using GNNs compared to principled solvers.
arXiv Detail & Related papers (2022-06-01T18:48:01Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
We present a physics-informed framework for solving time-dependent partial differential equations.
Our model utilizes discrete cosine transforms to encode spatial and recurrent neural networks.
We show experimental results on the Taylor-Green vortex solution to the Navier-Stokes equations.
arXiv Detail & Related papers (2022-02-24T20:46:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.