Multi-Grid Graph Neural Networks with Self-Attention for Computational Mechanics
- URL: http://arxiv.org/abs/2409.11899v1
- Date: Wed, 18 Sep 2024 11:47:48 GMT
- Title: Multi-Grid Graph Neural Networks with Self-Attention for Computational Mechanics
- Authors: Paul Garnier, Jonathan Viquerat, Elie Hachem,
- Abstract summary: This paper introduces a novel model merging Self-Attention with Message Passing in GNNs.
A dynamic mesh pruning technique based on Self-Attention is proposed, that leads to a robust GNN-based multigrid approach.
A new self-supervised training method based on BERT is presented, resulting in a 25% RMSE reduction.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advancement in finite element methods have become essential in various disciplines, and in particular for Computational Fluid Dynamics (CFD), driving research efforts for improved precision and efficiency. While Convolutional Neural Networks (CNNs) have found success in CFD by mapping meshes into images, recent attention has turned to leveraging Graph Neural Networks (GNNs) for direct mesh processing. This paper introduces a novel model merging Self-Attention with Message Passing in GNNs, achieving a 15\% reduction in RMSE on the well known flow past a cylinder benchmark. Furthermore, a dynamic mesh pruning technique based on Self-Attention is proposed, that leads to a robust GNN-based multigrid approach, also reducing RMSE by 15\%. Additionally, a new self-supervised training method based on BERT is presented, resulting in a 25\% RMSE reduction. The paper includes an ablation study and outperforms state-of-the-art models on several challenging datasets, promising advancements similar to those recently achieved in natural language and image processing. Finally, the paper introduces a dataset with meshes larger than existing ones by at least an order of magnitude. Code and Datasets will be released at https://github.com/DonsetPG/multigrid-gnn.
Related papers
- Novel Representation Learning Technique using Graphs for Performance
Analytics [0.0]
We propose a novel idea of transforming performance data into graphs to leverage the advancement of Graph Neural Network-based (GNN) techniques.
In contrast to other Machine Learning application domains, such as social networks, the graph is not given; instead, we need to build it.
We evaluate the effectiveness of the generated embeddings from GNNs based on how well they make even a simple feed-forward neural network perform for regression tasks.
arXiv Detail & Related papers (2024-01-19T16:34:37Z) - Multicoated and Folded Graph Neural Networks with Strong Lottery Tickets [3.0894823679470087]
This paper introduces the Multi-Stage Folding and Unshared Masks methods to expand the search space in terms of both architecture and parameters.
By achieving high sparsity, competitive performance, and high memory efficiency with up to 98.7% reduction, it demonstrates suitability for energy-efficient graph processing.
arXiv Detail & Related papers (2023-12-06T02:16:44Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
Heterogeneous Graph Neural Networks (HGNNs) are powerful tools for deep learning on heterogeneous graphs.
Recent pre-computation-based HGNNs use one-time message passing to transform a heterogeneous graph into regular-shaped tensors.
We propose a hybrid pre-computation-based HGNN, named Random Projection Heterogeneous Graph Neural Network (RpHGNN)
arXiv Detail & Related papers (2023-10-23T01:25:44Z) - Deep Graph Reprogramming [112.34663053130073]
"Deep graph reprogramming" is a model reusing task tailored for graph neural networks (GNNs)
We propose an innovative Data Reprogramming paradigm alongside a Model Reprogramming paradigm.
arXiv Detail & Related papers (2023-04-28T02:04:29Z) - DRGCN: Dynamic Evolving Initial Residual for Deep Graph Convolutional
Networks [19.483662490506646]
We propose a novel model called Dynamic evolving initial Residual Graph Convolutional Network (DRGCN)
Our experimental results show that our model effectively relieves the problem of over-smoothing in deep GCNs.
Our model reaches new SOTA results on the large-scale ogbn-arxiv dataset of Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-02-10T06:57:12Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
We propose a novel graph clustering network called Embedding-Induced Graph Refinement Clustering Network (EGRC-Net)
EGRC-Net effectively utilizes the learned embedding to adaptively refine the initial graph and enhance the clustering performance.
Our proposed methods consistently outperform several state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-19T09:08:43Z) - GCondNet: A Novel Method for Improving Neural Networks on Small High-Dimensional Tabular Data [14.124731264553889]
We propose GCondNet to enhance neural networks by leveraging implicit structures present in data.
GCondNet exploits the data's high-dimensionality, and thus improves the performance of an underlying predictor network.
We demonstrate GCondNet's effectiveness on 12 real-world datasets, where it outperforms 14 standard and state-of-the-art methods.
arXiv Detail & Related papers (2022-11-11T16:13:34Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
Modelling long-range dependencies is critical for scene understanding tasks in computer vision.
A fully-connected graph is beneficial for such modelling, but its computational overhead is prohibitive.
We propose a dynamic graph message passing network, that significantly reduces the computational complexity.
arXiv Detail & Related papers (2022-09-20T14:41:37Z) - Heuristic Semi-Supervised Learning for Graph Generation Inspired by
Electoral College [80.67842220664231]
We propose a novel pre-processing technique, namely ELectoral COllege (ELCO), which automatically expands new nodes and edges to refine the label similarity within a dense subgraph.
In all setups tested, our method boosts the average score of base models by a large margin of 4.7 points, as well as consistently outperforms the state-of-the-art.
arXiv Detail & Related papers (2020-06-10T14:48:48Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.