Operator-Projected Variational Quantum Imaginary Time Evolution
- URL: http://arxiv.org/abs/2409.12018v1
- Date: Wed, 18 Sep 2024 14:30:05 GMT
- Title: Operator-Projected Variational Quantum Imaginary Time Evolution
- Authors: Aeishah Ameera Anuar, Francois Jamet, Fabio Gironella, Fedor Simkovic IV, Riccardo Rossi,
- Abstract summary: We show that requiring the imaginary-time evolution to be correct only when projected onto a chosen set of operators allows to achieve a twofold reduction in circuit depth.
We demonstrate by a simulation of the transverse-field Ising model that our algorithm achieves a several orders of magnitude improvement in the number of measurements required for the same accuracy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational Quantum Imaginary Time Evolution (VQITE) is a leading technique for ground state preparation on quantum computers. A significant computational challenge of VQITE is the determination of the quantum geometric tensor. We show that requiring the imaginary-time evolution to be correct only when projected onto a chosen set of operators allows to achieve a twofold reduction in circuit depth by bypassing fidelity estimations, and reduces measurement complexity from quadratic to linear in the number of parameters. We demonstrate by a simulation of the transverse-field Ising model that our algorithm achieves a several orders of magnitude improvement in the number of measurements required for the same accuracy.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Hamiltonian Encoding for Quantum Approximate Time Evolution of Kinetic
Energy Operator [2.184775414778289]
The time evolution operator plays a crucial role in the precise computation of chemical experiments on quantum computers.
We have proposed a new encoding method, namely quantum approximate time evolution (QATE) for the quantum implementation of the kinetic energy operator.
arXiv Detail & Related papers (2023-10-05T05:25:38Z) - Stochastic Approximation of Variational Quantum Imaginary Time Evolution [0.716879432974126]
In quantum computers, the imaginary-time evolution of quantum states is integral to various fields.
Here, we suggest a approach to variational quantum imaginary-time evolution, which allows a significant reduction in runtimes.
We demonstrate the efficiency of our algorithm in simulations and show a hardware experiment performing the imaginary-time evolution of the transverse field Ising model on 27 qubits.
arXiv Detail & Related papers (2023-05-11T18:00:06Z) - Efficient quantum imaginary time evolution by drifting real time
evolution: an approach with low gate and measurement complexity [7.1064035036390925]
Quantum imaginary time evolution (QITE) is one of the promising candidates for finding eigenvalues and eigenstates of a Hamiltonian.
The original QITE proposal [Nat. Phys. 16, 205-210 ( 2020)], which approximates the imaginary time evolution by real time evolution, suffers from large circuit depth and measurements due to the size of the Pauli operator pool and Trotterization.
We propose a time-dependent drifting scheme inspired by thePhys. Rev. Lett 123, 070503 LiH], which randomly draws a Pauli term out of the approximated unitary operation generators of
arXiv Detail & Related papers (2022-03-21T16:41:27Z) - Error-resilient Monte Carlo quantum simulation of imaginary time [5.625946422295428]
We propose an algorithm for simulating the imaginary-time evolution and solving the ground-state problem.
Compared with quantum phase estimation, the Trotter step number can be thousands of times smaller.
Results show that Monte Carlo quantum simulation is promising even without a fully fault-tolerant quantum computer.
arXiv Detail & Related papers (2021-09-16T08:51:24Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - Evaluating low-depth quantum algorithms for time evolution on
fermion-boson systems [0.0]
Simulating time evolution of quantum systems is one of the most promising applications of quantum computing.
We propose the Jaynes-Cummings model and extensions to it as useful toy models to investigate time evolution algorithms on near-term quantum computers.
arXiv Detail & Related papers (2021-06-07T22:03:17Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.