Stochastic Approximation of Variational Quantum Imaginary Time Evolution
- URL: http://arxiv.org/abs/2305.07059v1
- Date: Thu, 11 May 2023 18:00:06 GMT
- Title: Stochastic Approximation of Variational Quantum Imaginary Time Evolution
- Authors: Julien Gacon, Christa Zoufal, Giuseppe Carleo, Stefan Woerner
- Abstract summary: In quantum computers, the imaginary-time evolution of quantum states is integral to various fields.
Here, we suggest a approach to variational quantum imaginary-time evolution, which allows a significant reduction in runtimes.
We demonstrate the efficiency of our algorithm in simulations and show a hardware experiment performing the imaginary-time evolution of the transverse field Ising model on 27 qubits.
- Score: 0.716879432974126
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The imaginary-time evolution of quantum states is integral to various fields,
ranging from natural sciences to classical optimization or machine learning.
Since simulating quantum imaginary-time evolution generally requires storing an
exponentially large wave function, quantum computers are emerging as a
promising platform for this task. However, variational approaches, suitable for
near-term quantum computers, struggle with a prohibitive number of measurements
and impractical runtimes for relevant system sizes. Here, we suggest a
stochastic approach to variational quantum imaginary-time evolution, which
allows a significant reduction in runtimes. Our approach allows trading off
invested resources and accuracy, which makes it also suitable for ground state
preparation, where simulating the exact dynamics is not required. We
demonstrate the efficiency of our algorithm in simulations and show a hardware
experiment performing the imaginary-time evolution of the transverse field
Ising model on 27 qubits.
Related papers
- Reaction dynamics with qubit-efficient momentum-space mapping [42.408991654684876]
We study quantum algorithms for response functions, relevant for describing different reactions governed by linear response.
We consider a qubit-efficient mapping on a lattice, which can be efficiently performed using momentum-space basis states.
arXiv Detail & Related papers (2024-03-30T00:21:46Z) - Ab-initio variational wave functions for the time-dependent many-electron Schrödinger equation [41.94295877935867]
We introduce a variational approach for fermionic time-dependent wave functions, surpassing mean-field approximations.
We use time-dependent Jastrow factors and backflow transformations, which are enhanced through neural networks parameterizations.
The results showcase the ability of our variational approach to accurately capture the time evolution, providing insight into the quantum dynamics of interacting electronic systems.
arXiv Detail & Related papers (2024-03-12T09:37:22Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Variational Quantum Time Evolution without the Quantum Geometric Tensor [0.6562256987706128]
variational quantum time evolution is a promising candidate for near-term devices.
We show that our algorithm accurately reproduces the system dynamics at a fraction of the cost of standard variational quantum time evolution algorithms.
As an application of quantum imaginary-time evolution, we calculate a thermodynamic observable, the energy per site, of the Heisenberg model.
arXiv Detail & Related papers (2023-03-22T18:00:08Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Evaluating low-depth quantum algorithms for time evolution on
fermion-boson systems [0.0]
Simulating time evolution of quantum systems is one of the most promising applications of quantum computing.
We propose the Jaynes-Cummings model and extensions to it as useful toy models to investigate time evolution algorithms on near-term quantum computers.
arXiv Detail & Related papers (2021-06-07T22:03:17Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Hardware-efficient variational quantum algorithms for time evolution [0.0]
We present alternatives to the time-dependent variational principle that are hardware-efficient and do not require matrix inversion.
In relation to imaginary time evolution, our approach significantly reduces the hardware requirements.
We numerically analyze the performance of our algorithms using quantum Hamiltonians with local interactions.
arXiv Detail & Related papers (2020-09-25T17:49:18Z) - Real- and imaginary-time evolution with compressed quantum circuits [0.5089078998562184]
We show that quantum circuits can provide a dramatically more efficient representation than current classical numerics.
For quantum circuits, we perform both real- and imaginary-time evolution using an optimization algorithm that is feasible on near-term quantum computers.
arXiv Detail & Related papers (2020-08-24T11:16:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.