Optimal Offline ORAM with Perfect Security via Simple Oblivious Priority Queues
- URL: http://arxiv.org/abs/2409.12021v1
- Date: Wed, 18 Sep 2024 14:31:33 GMT
- Title: Optimal Offline ORAM with Perfect Security via Simple Oblivious Priority Queues
- Authors: Thore Thießen, Jan Vahrenhold,
- Abstract summary: We study the so-called offline ORAM in which the sequence of memory access locations to be hidden is known in advance.
We obtain the first optimal offline ORAM with perfect security from oblivious priority queues via time-forward processing.
Building on our construction, we additionally present efficient external-memory instantiations of our oblivious, perfectly-secure construction.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Oblivious RAM (ORAM) is a well-researched primitive to hide the memory access pattern of a RAM computation; it has a variety of applications in trusted computing, outsourced storage, and multiparty computation. In this paper, we study the so-called offline ORAM in which the sequence of memory access locations to be hidden is known in advance. Apart from their theoretical significance, offline ORAMs can be used to construct efficient oblivious algorithms. We obtain the first optimal offline ORAM with perfect security from oblivious priority queues via time-forward processing. For this, we present a simple construction of an oblivious priority queue with perfect security. Our construction achieves an asymptotically optimal (amortized) runtime of $\Theta(\log N)$ per operation for a capacity of $N$ elements and is of independent interest. Building on our construction, we additionally present efficient external-memory instantiations of our oblivious, perfectly-secure construction: For the cache-aware setting, we match the optimal I/O complexity of $\Theta(\frac{1}{B} \log \frac{N}{M})$ per operation (amortized), and for the cache-oblivious setting we achieve a near-optimal I/O complexity of $O(\frac{1}{B} \log \frac{N}{M} \log\log_M N)$ per operation (amortized).
Related papers
- H$_2$O$_2$RAM: A High-Performance Hierarchical Doubly Oblivious RAM [14.803814604985957]
Oblivious RAM (ORAM) with Trusted Execution Environments (TEE) has found numerous real-world applications due to their complementary nature.
We introduce several new efficient oblivious components to build a high-performance hierarchical O$$RAM (H$$O$RAM)
The results indicate that H$$O$RAM reduces execution time by up to $sim 103$ times and saves memory usage by $5sim44$ times compared to stateoftheart solutions.
arXiv Detail & Related papers (2024-09-11T10:31:14Z) - A Training-free Sub-quadratic Cost Transformer Model Serving Framework With Hierarchically Pruned Attention [43.211427581302715]
We propose Hierarchically Pruned Attention (HiP) to increase context length in large language models.
HiP reduces the time complexity of the attention mechanism to $O(T log T)$ and the space complexity to $O(T)$, where $T$ is the sequence length.
We show that HiP significantly reduces both prefill and decoding latencies, as well as memory usage, while maintaining high-quality generation with minimal degradation.
arXiv Detail & Related papers (2024-06-14T08:32:45Z) - Perturb-and-Project: Differentially Private Similarities and Marginals [73.98880839337873]
We revisit the input perturbations framework for differential privacy where noise is added to the input $Ain mathcalS$.
We first design novel efficient algorithms to privately release pair-wise cosine similarities.
We derive a novel algorithm to compute $k$-way marginal queries over $n$ features.
arXiv Detail & Related papers (2024-06-07T12:07:16Z) - Freya PAGE: First Optimal Time Complexity for Large-Scale Nonconvex Finite-Sum Optimization with Heterogeneous Asynchronous Computations [92.1840862558718]
In practical distributed systems, workers typically not homogeneous, and can have highly varying processing times.
We introduce a new parallel method Freya to handle arbitrarily slow computations.
We show that Freya offers significantly improved complexity guarantees compared to all previous methods.
arXiv Detail & Related papers (2024-05-24T13:33:30Z) - Hierarchical Context Merging: Better Long Context Understanding for Pre-trained LLMs [61.40047491337793]
We present Hierarchical cOntext MERging (HOMER), a new training-free scheme designed to overcome the limitations of large language models.
HomeR uses a divide-and-conquer algorithm, dividing long inputs into manageable chunks.
A token reduction technique precedes each merging, ensuring memory usage efficiency.
arXiv Detail & Related papers (2024-04-16T06:34:08Z) - DDC-PIM: Efficient Algorithm/Architecture Co-design for Doubling Data
Capacity of SRAM-based Processing-In-Memory [6.367916611208411]
We propose DDC-PIM, an efficient algorithm/architecture co-design methodology that effectively doubles the equivalent data capacity.
DDC-PIM yields about $2.84times$ speedup on MobileNetV2 and $2.69times$ on EfficientNet-B0 with negligible accuracy loss.
Compared with state-of-the-art macros, DDC-PIM achieves up to $8.41times$ and $2.75times$ improvement in weight density and area efficiency, respectively.
arXiv Detail & Related papers (2023-10-31T12:49:54Z) - Cumulative Memory Lower Bounds for Randomized and Quantum Computation [1.52292571922932]
Cumulative memory is a measure of time-space complexity.
We prove the first lower bounds on cumulative memory complexity for both sequential classical computation and quantum circuits.
arXiv Detail & Related papers (2023-01-13T17:57:02Z) - Single Round-trip Hierarchical ORAM via Succinct Indices [5.437298646956505]
Rank ORAM can retrieve data with a single round-trip of communication.
A emphcompressed client-side data structure stores, implicitly, the location of each element at the server.
arXiv Detail & Related papers (2022-08-16T01:15:26Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - Scalable Differentially Private Clustering via Hierarchically Separated
Trees [82.69664595378869]
We show that our method computes a solution with cost at most $O(d3/2log n)cdot OPT + O(k d2 log2 n / epsilon2)$, where $epsilon$ is the privacy guarantee.
Although the worst-case guarantee is worse than that of state of the art private clustering methods, the algorithm we propose is practical.
arXiv Detail & Related papers (2022-06-17T09:24:41Z) - Quantum Resources Required to Block-Encode a Matrix of Classical Data [56.508135743727934]
We provide circuit-level implementations and resource estimates for several methods of block-encoding a dense $Ntimes N$ matrix of classical data to precision $epsilon$.
We examine resource tradeoffs between the different approaches and explore implementations of two separate models of quantum random access memory (QRAM)
Our results go beyond simple query complexity and provide a clear picture into the resource costs when large amounts of classical data are assumed to be accessible to quantum algorithms.
arXiv Detail & Related papers (2022-06-07T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.