論文の概要: PARAPHRASUS : A Comprehensive Benchmark for Evaluating Paraphrase Detection Models
- arxiv url: http://arxiv.org/abs/2409.12060v1
- Date: Wed, 18 Sep 2024 15:33:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 16:55:29.566967
- Title: PARAPHRASUS : A Comprehensive Benchmark for Evaluating Paraphrase Detection Models
- Title(参考訳): PARAPHRASUS : パラフレーズ検出モデル評価のための総合ベンチマーク
- Authors: Andrianos Michail, Simon Clematide, Juri Opitz,
- Abstract要約: Paraphrasusはパラフレーズ検出モデルの多次元評価のために設計されたベンチマークである。
詳細な評価レンズ下でのパラフレーズ検出モデルは,単一分類データセットでは取得できないトレードオフを示す。
- 参考スコア(独自算出の注目度): 5.980822697955566
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The task of determining whether two texts are paraphrases has long been a challenge in NLP. However, the prevailing notion of paraphrase is often quite simplistic, offering only a limited view of the vast spectrum of paraphrase phenomena. Indeed, we find that evaluating models in a paraphrase dataset can leave uncertainty about their true semantic understanding. To alleviate this, we release paraphrasus, a benchmark designed for multi-dimensional assessment of paraphrase detection models and finer model selection. We find that paraphrase detection models under a fine-grained evaluation lens exhibit trade-offs that cannot be captured through a single classification dataset.
- Abstract(参考訳): 2つのテキストがパラフレーズであるかどうかを決定するという課題は、NLPにおける長年の課題である。
しかし、一般的なパラフレーズの概念は、しばしば非常に単純であり、パラフレーズ現象の幅広いスペクトルの限られた見方しか提供しない。
実際、パラフレーズデータセットでモデルを評価することは、それらの真の意味的理解について不確実性を残す可能性がある。
これを軽減するために,パラフレーズ検出モデルの多次元評価とモデル選択のためのベンチマークであるparaphrasus をリリースする。
詳細な評価レンズ下でのパラフレーズ検出モデルは,単一分類データセットでは取得できないトレードオフを示す。
関連論文リスト
- Beyond Coarse-Grained Matching in Video-Text Retrieval [50.799697216533914]
きめ細かい評価のための新しいアプローチを導入する。
テストキャプションを自動的に生成することで,既存のデータセットにアプローチを適用することができる。
きめ細かい評価実験は、このアプローチがきめ細かな違いを理解するモデルの能力を高めることを実証している。
論文 参考訳(メタデータ) (2024-10-16T09:42:29Z) - Adapting Dual-encoder Vision-language Models for Paraphrased Retrieval [55.90407811819347]
モデルが類似した結果を返すことを目的とした,パラフレーズ付きテキスト画像検索の課題について考察する。
我々は、大きなテキストコーパスで事前訓練された言語モデルから始まる二重エンコーダモデルを訓練する。
CLIPやOpenCLIPのような公開デュアルエンコーダモデルと比較して、最高の適応戦略で訓練されたモデルは、パラフレーズクエリのランク付けの類似性を大幅に向上させる。
論文 参考訳(メタデータ) (2024-05-06T06:30:17Z) - Unsupervised Syntactically Controlled Paraphrase Generation with
Abstract Meaning Representations [59.10748929158525]
抽象表現(AMR)は、教師なし構文制御されたパラフレーズ生成の性能を大幅に向上させることができる。
提案モデルであるAMRPGは,AMRグラフを符号化し,入力文を2つの非絡み合った意味的および構文的埋め込みに解析する。
実験により、AMRPGは既存の教師なしアプローチと比較して、定量的かつ質的に、より正確な構文制御されたパラフレーズを生成することが示された。
論文 参考訳(メタデータ) (2022-11-02T04:58:38Z) - A Unified Understanding of Deep NLP Models for Text Classification [88.35418976241057]
我々は、テキスト分類のためのNLPモデルの統一的な理解を可能にする視覚解析ツールDeepNLPVisを開発した。
主要なアイデアは相互情報に基づく尺度であり、モデルの各レイヤがサンプル内の入力語の情報をどのように保持するかを定量的に説明する。
コーパスレベル、サンプルレベル、単語レベルビジュアライゼーションで構成されるマルチレベルビジュアライゼーションは、全体トレーニングセットから個々のサンプルまでの分析をサポートする。
論文 参考訳(メタデータ) (2022-06-19T08:55:07Z) - Necessity and Sufficiency for Explaining Text Classifiers: A Case Study
in Hate Speech Detection [7.022948483613112]
本稿では,テキスト分類器を記述し,ヘイトスピーチ検出の文脈で解析する特徴属性法を提案する。
我々は2つの相補的で理論的に根ざしたスコア -- 必然性と十分性 -- を提供し、より情報的な説明をもたらす。
提案手法は,テストスイートから得られた同じ例の集合上で異なるヘイトスピーチ検出モデルの予測を解析し,必要条件と有効条件の異なる値が,異なる種類の偽陽性誤りに対応していることを示す。
論文 参考訳(メタデータ) (2022-05-06T15:34:48Z) - Corpus-Based Paraphrase Detection Experiments and Review [0.0]
パラフレーズ検出は、盗作検出、著者帰属、質問応答、テキスト要約など、多くのアプリケーションにとって重要である。
本稿では,多種多様なコーパスベースモデル,特にディープラーニング(DL)モデルの性能概要とパラフレーズ検出の課題について述べる。
論文 参考訳(メタデータ) (2021-05-31T23:29:24Z) - MASKER: Masked Keyword Regularization for Reliable Text Classification [73.90326322794803]
文脈に基づく予測を容易にする微調整手法であるマスク付きキーワード正規化(MASKER)を提案する。
maskerはモデルを規則化し、他の単語からキーワードを再構築し、十分な文脈なしに低信頼の予測を行う。
分類精度を低下させることなくOOD検出とクロスドメインの一般化を改善したMASKERを提案する。
論文 参考訳(メタデータ) (2020-12-17T04:54:16Z) - Exemplar-Controllable Paraphrasing and Translation using Bitext [57.92051459102902]
私たちは、バイリンガルテキスト(bitext)からのみ学ぶことができるように、以前の作業からモデルを適用する。
提案した1つのモデルでは、両言語で制御されたパラフレーズ生成と、両言語で制御された機械翻訳の4つのタスクを実行することができる。
論文 参考訳(メタデータ) (2020-10-12T17:02:50Z) - Pointwise Paraphrase Appraisal is Potentially Problematic [21.06607915149245]
本研究では,2つの文を1つのシーケンスでペア化することにより,文のパラフレーズ識別のための細調整BERTの標準的な手法が,最先端性能のモデルとなることを示す。
また、これらのモデルでは、一対の同一文よりも高いパラフレーズスコアを持つランダム選択文を予測できることを示した。
論文 参考訳(メタデータ) (2020-05-25T09:27:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。