論文の概要: Pareto Data Framework: Steps Towards Resource-Efficient Decision Making Using Minimum Viable Data (MVD)
- arxiv url: http://arxiv.org/abs/2409.12112v1
- Date: Wed, 18 Sep 2024 16:31:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 16:45:43.715994
- Title: Pareto Data Framework: Steps Towards Resource-Efficient Decision Making Using Minimum Viable Data (MVD)
- Title(参考訳): Pareto Data Framework: 最小生存データ(MVD)を用いたリソース効率の高い意思決定に向けてのステップ
- Authors: Tashfain Ahmed, Josh Siegel,
- Abstract要約: 戦略的データ削減は、帯域幅、エネルギ、計算、ストレージコストを大幅に削減しつつ、高いパフォーマンスを維持することができることを示す。
このフレームワークは、最小生存データ(MVD)を特定し、パフォーマンスを犠牲にすることなく、リソース制約のある環境をまたいだ効率を最適化する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces the Pareto Data Framework, an approach for identifying and selecting the Minimum Viable Data (MVD) required for enabling machine learning applications on constrained platforms such as embedded systems, mobile devices, and Internet of Things (IoT) devices. We demonstrate that strategic data reduction can maintain high performance while significantly reducing bandwidth, energy, computation, and storage costs. The framework identifies Minimum Viable Data (MVD) to optimize efficiency across resource-constrained environments without sacrificing performance. It addresses common inefficient practices in an IoT application such as overprovisioning of sensors and overprecision, and oversampling of signals, proposing scalable solutions for optimal sensor selection, signal extraction and transmission, and data representation. An experimental methodology demonstrates effective acoustic data characterization after downsampling, quantization, and truncation to simulate reduced-fidelity sensors and network and storage constraints; results shows that performance can be maintained up to 95\% with sample rates reduced by 75\% and bit depths and clip length reduced by 50\% which translates into substantial cost and resource reduction. These findings have implications on the design and development of constrained systems. The paper also discusses broader implications of the framework, including the potential to democratize advanced AI technologies across IoT applications and sectors such as agriculture, transportation, and manufacturing to improve access and multiply the benefits of data-driven insights.
- Abstract(参考訳): 本稿では,組込みシステムやモバイルデバイス,IoT(Internet of Things)デバイスなどの制約のあるプラットフォーム上での機械学習アプリケーションを実現するために必要となる,最小生存データ(MVD)を特定し,選択するためのアプローチであるPareto Data Frameworkを紹介する。
戦略的データ削減は、帯域幅、エネルギ、計算、ストレージコストを大幅に削減しつつ、高いパフォーマンスを維持することができることを示す。
このフレームワークは、最小生存データ(MVD)を特定し、パフォーマンスを犠牲にすることなく、リソース制約のある環境をまたいだ効率を最適化する。
センサのオーバープロビジョンや過剰精度、信号のオーバーサンプリング、最適なセンサ選択のためのスケーラブルなソリューションの提案、信号抽出と送信、データ表現など、IoTアプリケーションにおける一般的な非効率なプラクティスに対処する。
実験により, ダウンサンプリング, 量子化, トランケーション後の有効音響データのキャラクタリゼーションにより, 精度の低下したセンサやネットワーク, ストレージの制約をシミュレートし, サンプルレートを75 %, ビット深さとクリップ長を50 %まで低減して, 性能を95 %まで維持できることを示した。
これらの知見は制約系の設計と開発に影響を及ぼす。
また、このフレームワークは、IoTアプリケーションや農業、輸送、製造業といった分野にまたがる先進的なAI技術を民主化し、アクセスを改善し、データ駆動型洞察のメリットを乗算する可能性を含む、幅広い意味についても論じている。
関連論文リスト
- Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
異常と欠落したデータは、産業応用における厄介な問題を構成する。
ディープラーニングによる異常検出が重要な方向として現れている。
エッジデバイスで収集されたデータは、ユーザのプライバシを含む。
論文 参考訳(メタデータ) (2024-11-06T15:38:31Z) - Reducing Data Bottlenecks in Distributed, Heterogeneous Neural Networks [5.32129361961937]
本稿では,組込みマルチコアおよびマルチコアシステムにおいて,ボトルネックサイズがディープラーニングモデルの性能に与える影響について検討する。
ハードウェア・ソフトウェア共同設計手法を適用し,データトラフィックを減らすため,データボトルネックを極めて狭い層に置き換える。
ハードウェア側の評価では、より高いボトルネック比が、ニューラルネットワークの層間でのデータ転送量を大幅に削減することを示している。
論文 参考訳(メタデータ) (2024-10-12T21:07:55Z) - Speech Emotion Recognition under Resource Constraints with Data Distillation [64.36799373890916]
音声感情認識(SER)は、人間とコンピュータの相互作用において重要な役割を果たす。
モノのインターネットにおけるエッジデバイスの出現は、複雑なディープラーニングモデルを構築する上での課題を示している。
本研究では,IoTアプリケーションにおけるSERモデルの効率的な開発を容易にするためのデータ蒸留フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-21T13:10:46Z) - A Plug-in Tiny AI Module for Intelligent and Selective Sensor Data
Transmission [10.174575604689391]
本稿では、インテリジェントなデータ伝送機能を備えたセンシングフレームワークを実現するための新しいセンシングモジュールを提案する。
センサの近くに置かれる高効率機械学習モデルを統合する。
このモデルは,無関係な情報を破棄しながら,貴重なデータのみを送信するセンサシステムに対して,迅速なフィードバックを提供する。
論文 参考訳(メタデータ) (2024-02-03T05:41:39Z) - Edge-assisted U-Shaped Split Federated Learning with Privacy-preserving
for Internet of Things [4.68267059122563]
本稿では,エッジサーバの高性能機能を活用した,エッジ支援型U-Shaped Split Federated Learning (EUSFL) フレームワークを提案する。
このフレームワークでは、フェデレートラーニング(FL)を活用し、データ保持者がデータを共有せずに協調的にモデルをトレーニングできるようにします。
また,データの特徴やラベルが復元攻撃に対して確実に耐えられるように,ラベルDPと呼ばれる新しいノイズ機構を提案する。
論文 参考訳(メタデータ) (2023-11-08T05:14:41Z) - Filling the Missing: Exploring Generative AI for Enhanced Federated
Learning over Heterogeneous Mobile Edge Devices [72.61177465035031]
ローカルデータのFIMI(FIlling the MIssing)部分を活用することにより,これらの課題に対処する,AIを活用した創発的なフェデレーション学習を提案する。
実験の結果,FIMIはデバイス側エネルギーの最大50%を節約し,目標とするグローバルテスト精度を達成できることがわかった。
論文 参考訳(メタデータ) (2023-10-21T12:07:04Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
本稿では、データの不均一性を考慮した無線FLの性能解析と最適化と、無線リソース割り当てについて述べる。
ロス関数の最小化問題を、長期エネルギー消費と遅延の制約の下で定式化し、クライアントスケジューリング、リソース割り当て、ローカルトレーニングエポック数(CRE)を共同で最適化する。
実世界のデータセットの実験により、提案アルゴリズムは学習精度とエネルギー消費の点で他のベンチマークよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-04T04:18:01Z) - Online Data Selection for Federated Learning with Limited Storage [53.46789303416799]
ネットワークデバイス間での分散機械学習を実現するために、フェデレートラーニング(FL)が提案されている。
デバイス上のストレージがFLの性能に与える影響はまだ調査されていない。
本研究では,デバイス上のストレージを限定したFLのオンラインデータ選択について検討する。
論文 参考訳(メタデータ) (2022-09-01T03:27:33Z) - Remote Multilinear Compressive Learning with Adaptive Compression [107.87219371697063]
MultiIoT Compressive Learning (MCL)は、多次元信号に対する効率的な信号取得および学習パラダイムである。
MCLモデルにそのような機能を実現するための新しい最適化手法を提案する。
論文 参考訳(メタデータ) (2021-09-02T19:24:03Z) - Differentially Private Federated Learning for Resource-Constrained
Internet of Things [24.58409432248375]
フェデレーション学習は、中央にデータをアップロードすることなく、分散されたスマートデバイスから大量のデータを分析できる。
本稿では、IoTのリソース制約されたスマートデバイスにまたがるデータから機械学習モデルを効率的にトレーニングするためのDP-PASGDと呼ばれる新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-28T04:32:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。