論文の概要: Low Frame-rate Speech Codec: a Codec Designed for Fast High-quality Speech LLM Training and Inference
- arxiv url: http://arxiv.org/abs/2409.12117v1
- Date: Wed, 18 Sep 2024 16:39:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 16:45:43.710113
- Title: Low Frame-rate Speech Codec: a Codec Designed for Fast High-quality Speech LLM Training and Inference
- Title(参考訳): 低フレームレート音声コーデック:高速LLM訓練と推論のためのコーデック
- Authors: Edresson Casanova, Ryan Langman, Paarth Neekhara, Shehzeen Hussain, Jason Li, Subhankar Ghosh, Ante Jukić, Sang-gil Lee,
- Abstract要約: 提案する低フレームレート音声符号化(LFSC: Low Frame-rate Speech Codec)は, 有限スカラー量子化と大規模言語モデルによる対角訓練を利用して, 1.89kbps, 21.5fpsの高品質音声圧縮を実現するニューラルオーディオである。
本稿では,従来のモデルに匹敵する品質を向上しつつ,テキスト音声モデルの3倍高速な推定が可能であることを実証する。
- 参考スコア(独自算出の注目度): 10.909997817643905
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have significantly advanced audio processing through audio codecs that convert audio into discrete tokens, enabling the application of language modeling techniques to audio data. However, audio codecs often operate at high frame rates, resulting in slow training and inference, especially for autoregressive models. To address this challenge, we present the Low Frame-rate Speech Codec (LFSC): a neural audio codec that leverages finite scalar quantization and adversarial training with large speech language models to achieve high-quality audio compression with a 1.89 kbps bitrate and 21.5 frames per second. We demonstrate that our novel codec can make the inference of LLM-based text-to-speech models around three times faster while improving intelligibility and producing quality comparable to previous models.
- Abstract(参考訳): 大規模言語モデル (LLM) は、音声コーデックによって音声を個別のトークンに変換することにより、言語モデリング技術のオーディオデータへの応用を可能にする。
しかし、オーディオコーデックは高いフレームレートで動作し、特に自己回帰モデルではトレーニングや推論が遅くなる。
この課題に対処するために,大きな言語モデルを用いた有限スカラー量子化と対角トレーニングを活用し,1.89kbpsのビットレートと21.5フレーム毎秒の高品質な音声圧縮を実現するニューラルオーディオコーデック,LFSC(Lolow Frame-rate Speech Codec)を提案する。
我々の新しいコーデックは、従来のモデルに匹敵する品質を保ちながら、LLMベースのテキスト音声モデルの約3倍高速に推定できることを示した。
関連論文リスト
- LSCodec: Low-Bitrate and Speaker-Decoupled Discrete Speech Codec [14.7377193484733]
LSCodecは低話者分離能力と低話者分離能力を持つ離散音声である。
再構成実験により、LSCodecは、単一のコードブックだけで、ベースラインよりも語彙サイズが小さい、優れた知性およびオーディオ品質を示す。
論文 参考訳(メタデータ) (2024-10-21T08:23:31Z) - Codec Does Matter: Exploring the Semantic Shortcoming of Codec for Audio Language Model [36.61105228468503]
X-Codecは、Residual Vector Quantizationステージの前に、事前訓練されたセマンティックエンコーダのセマンティック機能を組み込んでいる。
X-Codecは音声合成タスクのWERを大幅に削減し、これらの利点を非音声アプリケーションに拡張する。
音声合成における意味情報の統合は,音声生成における言語モデル全体の性能を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2024-08-30T10:24:07Z) - SemantiCodec: An Ultra Low Bitrate Semantic Audio Codec for General Sound [40.810505707522324]
SemantiCodecは、様々なオーディオタイプで毎秒100トークン未満にオーディオを圧縮するように設計されている。
本稿では,セマンティコーデックが再現性に関する最先端の記述を著しく上回っていることを示す。
また,SemantiCodecはすべての評価音声コーデックよりもはるかにリッチな意味情報を含んでいることも示唆した。
論文 参考訳(メタデータ) (2024-04-30T22:51:36Z) - LauraGPT: Listen, Attend, Understand, and Regenerate Audio with GPT [65.69648099999439]
Generative Pre-trained Transformer (GPT) モデルは、様々な自然言語処理タスクにおいて顕著なパフォーマンスを実現している。
音声認識, 理解, 生成のための新しい音声・テキストGPTベースのLLMであるLauraGPTを提案する。
論文 参考訳(メタデータ) (2023-10-07T03:17:59Z) - FunCodec: A Fundamental, Reproducible and Integrable Open-source Toolkit
for Neural Speech Codec [55.95078490630001]
本稿では,オープンソースの音声処理ツールキット FunASR を拡張した基本的ニューラル音声ツールキット FunCodec について述べる。
FunCodecは、SoundStreamやEncodecといった最新のニューラルスピーチモデルに対して、再現可能なトレーニングレシピと推論スクリプトを提供する。
FunCodecとともに、事前訓練されたモデルも提供される。
論文 参考訳(メタデータ) (2023-09-14T03:18:24Z) - SoundStorm: Efficient Parallel Audio Generation [27.121920017380273]
本研究では,効率的な非自己回帰音声生成モデルSoundStormを提案する。
SoundStormはAudioLMのセマンティックトークンとして受け取られ、双方向の注意と信頼に基づく並列デコーディングに依存している。
我々は,高品質な自然な対話セグメントを合成することにより,より長いシーケンスに音声生成を拡張できることを実証する。
論文 参考訳(メタデータ) (2023-05-16T17:41:25Z) - AudioLM: a Language Modeling Approach to Audio Generation [59.19364975706805]
本稿では,長期的整合性を有する高品質オーディオ生成フレームワークであるAudioLMを紹介する。
本稿では,既存の音声トークンが,再建品質と長期構造との間に異なるトレードオフをもたらすことを示す。
我々は,コヒーレントピアノ音楽の継続を生成することによって,我々のアプローチが音声を超えてどのように拡張されるかを実証する。
論文 参考訳(メタデータ) (2022-09-07T13:40:08Z) - FastLTS: Non-Autoregressive End-to-End Unconstrained Lip-to-Speech
Synthesis [77.06890315052563]
我々は、低レイテンシで非拘束音声から高品質な音声を直接合成できる非自己回帰的エンドツーエンドモデルであるFastLTSを提案する。
実験により,本モデルは3秒の入力シーケンスにおける現在の自己回帰モデルと比較して,音声生成の19.76倍の高速化を実現していることがわかった。
論文 参考訳(メタデータ) (2022-07-08T10:10:39Z) - Pre-Training Transformer Decoder for End-to-End ASR Model with Unpaired
Speech Data [145.95460945321253]
本稿では,音響単位,すなわち擬似符号を用いたエンコーダ・デコーダネットワークのための2つの事前学習タスクを提案する。
提案したSpeech2Cは,デコーダを事前学習することなく,単語誤り率(WER)を19.2%削減できる。
論文 参考訳(メタデータ) (2022-03-31T15:33:56Z) - SoundStream: An End-to-End Neural Audio Codec [78.94923131038682]
本稿では,音声,音楽,一般音声を効率よく圧縮できる新しいニューラルオーディオシステムSoundStreamを紹介する。
SoundStreamは完全な畳み込みエンコーダ/デコーダネットワークと残留ベクトル量子化器に頼っている。
エンコーダまたはデコーダ側で、追加のレイテンシなしで、共同圧縮と拡張を行うことができます。
論文 参考訳(メタデータ) (2021-07-07T15:45:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。