論文の概要: LauraGPT: Listen, Attend, Understand, and Regenerate Audio with GPT
- arxiv url: http://arxiv.org/abs/2310.04673v4
- Date: Wed, 3 Jul 2024 02:38:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 20:33:17.036922
- Title: LauraGPT: Listen, Attend, Understand, and Regenerate Audio with GPT
- Title(参考訳): LauraGPT: GPTによる聴取, 聴取, 理解, 再生
- Authors: Zhihao Du, Jiaming Wang, Qian Chen, Yunfei Chu, Zhifu Gao, Zerui Li, Kai Hu, Xiaohuan Zhou, Jin Xu, Ziyang Ma, Wen Wang, Siqi Zheng, Chang Zhou, Zhijie Yan, Shiliang Zhang,
- Abstract要約: Generative Pre-trained Transformer (GPT) モデルは、様々な自然言語処理タスクにおいて顕著なパフォーマンスを実現している。
音声認識, 理解, 生成のための新しい音声・テキストGPTベースのLLMであるLauraGPTを提案する。
- 参考スコア(独自算出の注目度): 65.69648099999439
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative Pre-trained Transformer (GPT) models have achieved remarkable performance on various natural language processing tasks, and have shown great potential as backbones for audio-and-text large language models (LLMs). Previous mainstream audio-and-text LLMs use discrete audio tokens to represent both input and output audio; however, they suffer from performance degradation on tasks such as automatic speech recognition, speech-to-text translation, and speech enhancement over models using continuous speech features. In this paper, we propose LauraGPT, a novel unified audio-and-text GPT-based LLM for audio recognition, understanding, and generation. LauraGPT is a versatile LLM that can process both audio and text inputs and generate outputs in either modalities. We propose a novel data representation that combines continuous and discrete features for audio: LauraGPT encodes input audio into continuous representations using an audio encoder and generates output audio from discrete codec codes. We propose a one-step codec vocoder to overcome the prediction challenge caused by the multimodal distribution of codec tokens. We fine-tune LauraGPT using supervised multi-task learning. Extensive experiments show that LauraGPT consistently achieves comparable to superior performance compared to strong baselines on a wide range of audio tasks related to content, semantics, paralinguistics, and audio-signal analysis, such as automatic speech recognition, speech-to-text translation, text-to-speech synthesis, speech enhancement, automated audio captioning, speech emotion recognition, and spoken language understanding.
- Abstract(参考訳): Generative Pre-trained Transformer (GPT)モデルは、様々な自然言語処理タスクにおいて顕著な性能を発揮し、音声とテキストの大規模言語モデル(LLM)のバックボーンとして大きな可能性を示している。
従来の主流のLLMでは、入力音声と出力音声の両方を表すために離散音声トークンを使用していたが、音声認識、音声からテキストへの翻訳、連続した音声特徴を用いたモデルに対する音声強調といったタスクのパフォーマンス劣化に悩まされている。
本稿では,LuraGPTを提案する。LauraGPTは,音声認識,理解,生成のための新しい音声・テキストGPTベースのLLMである。
LauraGPTは、オーディオ入力とテキスト入力の両方を処理し、いずれのモードでも出力を生成する汎用LLMである。
ラウラGPTは音声エンコーダを用いて入力音声を連続表現に符号化し、離散コーデック符号から出力音声を生成する。
本稿では,コーデックトークンのマルチモーダル分布に起因する予測課題を克服するために,ワンステップのコーデックボコーダを提案する。
教師付きマルチタスク学習を用いてLauraGPTを微調整する。
大規模な実験により、LauraGPTは、音声の自動認識、音声合成、音声合成、音声強調、自動音声キャプション、音声感情認識、音声言語理解など、コンテンツ、セマンティクス、パラ言語学、音声信号分析に関連する幅広い音声タスクの強いベースラインに比べて、常に優れたパフォーマンスを達成することが示された。
関連論文リスト
- CosyVoice: A Scalable Multilingual Zero-shot Text-to-speech Synthesizer based on Supervised Semantic Tokens [49.569695524535454]
本稿では, ベクトル量子化をエンコーダに挿入することにより, 多言語音声認識モデルから導出される, 教師付きセマンティックトークンを用いた音声表現を提案する。
トークンをベースとした拡張性のあるゼロショットTSシンセサイザーであるCosyVoiceは,テキスト・ツー・ツー・ケン生成のためのLLMと,トークン・ツー・音声合成のための条件付きフローマッチングモデルから構成される。
論文 参考訳(メタデータ) (2024-07-07T15:16:19Z) - VoiceLDM: Text-to-Speech with Environmental Context [22.29992463094861]
VoiceLDMは、2つの異なる自然言語のプロンプトを正確に追従するオーディオを生成するために設計されたモデルである。
事前訓練されたコントラスト言語事前訓練(CLAP)とWhisperを利用することで、VoiceLDMは手動の注釈や書き起こしなしに大量の現実世界のオーディオで訓練される。
我々は,VoiceLDMが両入力条件に整合した可塑性音声を生成することができることを示す。
論文 参考訳(メタデータ) (2023-09-24T15:20:59Z) - WavJourney: Compositional Audio Creation with Large Language Models [38.39551216587242]
We present WavJourney, a novel framework that leverages Large Language Models to connect various audio model for audio creation。
WavJourneyを使えば、ユーザーはテキストによる説明だけで様々なオーディオ要素でストーリーテリングオーディオコンテンツを作成できる。
We show that WavJourney are capable to synthesize real audio aligned with textual-description semantic, spatial and temporal conditions。
論文 参考訳(メタデータ) (2023-07-26T17:54:04Z) - Prompting Large Language Models with Speech Recognition Abilities [31.77576008965215]
我々は,音声認識を行うための小型オーディオエンコーダを直接取り付けることで,大規模言語モデルの能力を拡張した。
MultilingualSpeechの実験では、コンバータエンコーダをオープンソースのLLaMA-7Bに組み込むことで、モノリンガルベースラインを18%上回る結果となった。
論文 参考訳(メタデータ) (2023-07-21T08:39:15Z) - AudioPaLM: A Large Language Model That Can Speak and Listen [79.44757696533709]
本稿では,音声理解・生成のための大規模言語モデルであるAudioPaLMを紹介する。
AudioPaLMはテキストベースの言語モデルと音声ベースの言語モデルを融合する。
音声認識や音声音声翻訳などの応用により、テキストと音声を処理および生成することができる。
論文 参考訳(メタデータ) (2023-06-22T14:37:54Z) - Exploring the Role of Audio in Video Captioning [59.679122191706426]
本稿では,キャプションの音響モダリティの可能性をフル活用することを目的とした音声視覚フレームワークを提案する。
本稿では,音声とビデオ間の情報交換を改善するため,新たなローカル・グローバル融合機構を提案する。
論文 参考訳(メタデータ) (2023-06-21T20:54:52Z) - AudioGPT: Understanding and Generating Speech, Music, Sound, and Talking
Head [82.69233563811487]
大規模言語モデル(LLM)は、さまざまな領域やタスクにまたがって顕著な能力を示し、学習と認知の理解に挑戦しています。
本稿では,LLMを基本モデルで補完し,複雑な音声情報を処理するマルチモーダルAIシステムであるAudioGPTを提案する。
論文 参考訳(メタデータ) (2023-04-25T17:05:38Z) - AudioLM: a Language Modeling Approach to Audio Generation [59.19364975706805]
本稿では,長期的整合性を有する高品質オーディオ生成フレームワークであるAudioLMを紹介する。
本稿では,既存の音声トークンが,再建品質と長期構造との間に異なるトレードオフをもたらすことを示す。
我々は,コヒーレントピアノ音楽の継続を生成することによって,我々のアプローチが音声を超えてどのように拡張されるかを実証する。
論文 参考訳(メタデータ) (2022-09-07T13:40:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。