論文の概要: multiPI-TransBTS: A Multi-Path Learning Framework for Brain Tumor Image Segmentation Based on Multi-Physical Information
- arxiv url: http://arxiv.org/abs/2409.12167v1
- Date: Wed, 18 Sep 2024 17:35:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 16:21:44.896865
- Title: multiPI-TransBTS: A Multi-Path Learning Framework for Brain Tumor Image Segmentation Based on Multi-Physical Information
- Title(参考訳): MultiPI-TransBTS:マルチ物理情報に基づく脳腫瘍画像分割のためのマルチパス学習フレームワーク
- Authors: Hongjun Zhu, Jiaohang Huang, Kuo Chen, Xuehui Ying, Ying Qian,
- Abstract要約: 脳腫瘍距離(BraTS)は、臨床診断、治療計画、脳腫瘍の進行のモニタリングにおいて重要な役割を果たす。
腫瘍の出現、サイズ、強度の変動により、自動セグメンテーションは難しい課題である。
セグメント化精度を高めるために多物理情報を統合するトランスフォーマーベースの新しいフレームワークである MultiPI-TransBTS を提案する。
- 参考スコア(独自算出の注目度): 1.7359724605901228
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Brain Tumor Segmentation (BraTS) plays a critical role in clinical diagnosis, treatment planning, and monitoring the progression of brain tumors. However, due to the variability in tumor appearance, size, and intensity across different MRI modalities, automated segmentation remains a challenging task. In this study, we propose a novel Transformer-based framework, multiPI-TransBTS, which integrates multi-physical information to enhance segmentation accuracy. The model leverages spatial information, semantic information, and multi-modal imaging data, addressing the inherent heterogeneity in brain tumor characteristics. The multiPI-TransBTS framework consists of an encoder, an Adaptive Feature Fusion (AFF) module, and a multi-source, multi-scale feature decoder. The encoder incorporates a multi-branch architecture to separately extract modality-specific features from different MRI sequences. The AFF module fuses information from multiple sources using channel-wise and element-wise attention, ensuring effective feature recalibration. The decoder combines both common and task-specific features through a Task-Specific Feature Introduction (TSFI) strategy, producing accurate segmentation outputs for Whole Tumor (WT), Tumor Core (TC), and Enhancing Tumor (ET) regions. Comprehensive evaluations on the BraTS2019 and BraTS2020 datasets demonstrate the superiority of multiPI-TransBTS over the state-of-the-art methods. The model consistently achieves better Dice coefficients, Hausdorff distances, and Sensitivity scores, highlighting its effectiveness in addressing the BraTS challenges. Our results also indicate the need for further exploration of the balance between precision and recall in the ET segmentation task. The proposed framework represents a significant advancement in BraTS, with potential implications for improving clinical outcomes for brain tumor patients.
- Abstract(参考訳): 脳腫瘍分離(BraTS)は、臨床診断、治療計画、脳腫瘍の進行のモニタリングにおいて重要な役割を担っている。
しかし, 腫瘍の出現, サイズ, 強度の変動により, 自動セグメンテーションは難しい課題である。
本研究では,マルチ物理情報を統合し,セグメンテーション精度を向上させるトランスフォーマーベースの新しいフレームワークである MultiPI-TransBTS を提案する。
このモデルは、空間情報、意味情報、マルチモーダルイメージングデータを活用し、脳腫瘍の特徴に固有の不均一性に対処する。
MultiPI-TransBTSフレームワークは、エンコーダ、Adaptive Feature Fusion (AFF)モジュール、マルチソースのマルチスケール機能デコーダで構成される。
エンコーダはマルチブランチアーキテクチャを組み込んで、異なるMRIシーケンスからモダリティ固有の特徴を別々に抽出する。
AFFモジュールは、チャネルワイドおよび要素ワイドの注意を用いて複数のソースからの情報を融合し、効果的な特徴の校正を保証する。
このデコーダは、タスク特化機能導入(TSFI)戦略を通じて、共通機能とタスク特化機能を組み合わせて、全腫瘍(WT)、腫瘍コア(TC)、腫瘍(ET)領域の正確なセグメンテーション出力を生成する。
BraTS2019とBraTS2020データセットの総合的な評価は、最先端の手法よりもマルチPI-TransBTSの方が優れていることを示している。
このモデルは、より優れたDice係数、ハウスドルフ距離、感度スコアを一貫して達成し、BraTSの課題に対処する上での有効性を強調している。
また,ETセグメンテーションタスクにおける精度とリコールのバランスについて,さらなる検討の必要性が示唆された。
提案フレームワークはBraTSの大幅な進歩を示し,脳腫瘍患者に対する臨床効果の向上に寄与する可能性が示唆された。
関連論文リスト
- Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
本稿では,畳み込みニューラルネットワーク(CNN)とトランスフォーマー層を組み合わせたハイブリッドネットワークを提案する。
プライベートおよびパブリックなDCE-MRIデータセットの実験結果から,提案したハイブリッドネットワークは最先端の手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-08-11T15:46:00Z) - A Multimodal Feature Distillation with CNN-Transformer Network for Brain Tumor Segmentation with Incomplete Modalities [15.841483814265592]
本稿では,CNN-Transformer Hybrid Network (MCTSeg) を用いたマルチモーダル特徴蒸留法を提案する。
CNN-Transformer ネットワークと Transformer の畳み込みブロックを併用して提案するモジュールの重要性について検討した。
論文 参考訳(メタデータ) (2024-04-22T09:33:44Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
本研究は肝病変分類のための新しいSDR-Formerフレームワークを提案する。
提案フレームワークは2つの臨床データセットに関する総合的な実験を通じて検証された。
科学コミュニティを支援するため,肝病変解析のための多段階MRデータセットを公開しています。
論文 参考訳(メタデータ) (2024-02-27T06:32:56Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
脳腫瘍は世界で最も致命的ながんの1つであり、子供や高齢者に非常に多い。
本稿では,MRI脳腫瘍グレーディングの課題に対処するために,新たな多モード学習法を提案する。
論文 参考訳(メタデータ) (2024-01-17T07:54:49Z) - Fully Automated Tumor Segmentation for Brain MRI data using Multiplanner
UNet [0.29998889086656577]
本研究は,3つの挑戦的データセットにまたがる腫瘍サブリージョンの分割におけるマルチプランナーU-Net(MPUnet)アプローチの有効性を評価する。
論文 参考訳(メタデータ) (2024-01-12T10:46:19Z) - CKD-TransBTS: Clinical Knowledge-Driven Hybrid Transformer with
Modality-Correlated Cross-Attention for Brain Tumor Segmentation [37.39921484146194]
磁気共鳴画像(MRI)における脳腫瘍のセグメンテーションは、脳腫瘍の診断、癌管理、研究目的に不可欠である。
10年にわたるBraTSチャレンジの成功により、様々な技術的側面においてBTSの難しさに取り組むために、多くの優れたBTSモデルが提案されている。
CKD-TransBTSと呼ばれる臨床知識駆動型脳腫瘍分節モデルを提案する。
論文 参考訳(メタデータ) (2022-07-15T09:35:29Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
本論文では,UDAスキームに基づくBiGL(Bidirectional Global-to-Local)適応フレームワークを提案する。
具体的には、脳腫瘍をセグメント化するために、双方向画像合成およびセグメンテーションモジュールを提案する。
提案手法は, 最先端の非教師なし領域適応法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2021-05-17T10:11:45Z) - Context Aware 3D UNet for Brain Tumor Segmentation [24.27997192961372]
UNetは、医用イメージングタスクのための3D CNNアーキテクチャのパフォーマンスの主要な情報源である。
脳腫瘍セグメント化のためのUNetアーキテクチャの修正を提案する。
論文 参考訳(メタデータ) (2020-10-25T10:32:25Z) - Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement
and Gated Fusion [71.87627318863612]
画像モダリティの欠如に頑健な新しいマルチモーダルセグメンテーションフレームワークを提案する。
我々のネットワークは、入力モードをモダリティ固有の外観コードに分解するために、特徴不整合を用いる。
我々は,BRATSチャレンジデータセットを用いて,重要なマルチモーダル脳腫瘍セグメンテーション課題に対する本手法の有効性を検証した。
論文 参考訳(メタデータ) (2020-02-22T14:32:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。