To CoT or not to CoT? Chain-of-thought helps mainly on math and symbolic reasoning
- URL: http://arxiv.org/abs/2409.12183v2
- Date: Tue, 29 Oct 2024 01:19:28 GMT
- Title: To CoT or not to CoT? Chain-of-thought helps mainly on math and symbolic reasoning
- Authors: Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez, Dongwei Jiang, Manya Wadhwa, Prasann Singhal, Xinyu Zhao, Xi Ye, Kyle Mahowald, Greg Durrett,
- Abstract summary: Chain-of-thought (CoT) via prompting is the de facto method for eliciting reasoning capabilities from large language models (LLMs)
We show that CoT gives strong performance benefits primarily on tasks involving math or logic, with much smaller gains on other types of tasks.
- Score: 55.52872152909785
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chain-of-thought (CoT) via prompting is the de facto method for eliciting reasoning capabilities from large language models (LLMs). But for what kinds of tasks is this extra ``thinking'' really helpful? To analyze this, we conducted a quantitative meta-analysis covering over 100 papers using CoT and ran our own evaluations of 20 datasets across 14 models. Our results show that CoT gives strong performance benefits primarily on tasks involving math or logic, with much smaller gains on other types of tasks. On MMLU, directly generating the answer without CoT leads to almost identical accuracy as CoT unless the question or model's response contains an equals sign, indicating symbolic operations and reasoning. Following this finding, we analyze the behavior of CoT on these problems by separating planning and execution and comparing against tool-augmented LLMs. Much of CoT's gain comes from improving symbolic execution, but it underperforms relative to using a symbolic solver. Our results indicate that CoT can be applied selectively, maintaining performance while saving inference costs. Furthermore, they suggest a need to move beyond prompt-based CoT to new paradigms that better leverage intermediate computation across the whole range of LLM applications.
Related papers
- Markov Chain of Thought for Efficient Mathematical Reasoning [10.678633785012691]
Chain of Thought (CoT) of multi-step benefits from the logical structure of the reasoning steps and task-specific actions.
We conceptualize the standard multi-step CoT as a novel Markov Chain of Thought (MCoT)
arXiv Detail & Related papers (2024-10-23T07:53:29Z) - FLARE: Faithful Logic-Aided Reasoning and Exploration [50.9814063216852]
We introduce a novel approach for traversing the problem space using task decompositions.
We use the Large Language Models to plan a solution, soft-formalise the query into facts and predicates using a logic programming code.
Our method allows us to compute the faithfulness of the reasoning process w.r.t. the generated code and analyse the steps of the multi-hop search without relying on external solvers.
arXiv Detail & Related papers (2024-10-14T19:39:11Z) - Instance-adaptive Zero-shot Chain-of-Thought Prompting [32.700073951068575]
Zero-shot Chain-of-Thought (CoT) prompting emerges as a simple and effective strategy for enhancing the performance of large language models (LLMs) in real-world reasoning tasks.
This work introduces an instance-adaptive prompting algorithm as an alternative zero-shot CoT reasoning scheme by adaptively differentiating good and bad prompts.
arXiv Detail & Related papers (2024-09-30T16:00:34Z) - Expediting and Elevating Large Language Model Reasoning via Hidden Chain-of-Thought Decoding [14.175444025026508]
Large language models (LLMs) have demonstrated remarkable capabilities in tasks requiring chain-of-thought (CoT) prompting.
generating the full CoT process results in significantly longer output sequences, leading to increased computational costs and latency during inference.
We propose a novel approach to compress the CoT process through semantic alignment, enabling more efficient decoding while preserving the benefits of CoT reasoning.
arXiv Detail & Related papers (2024-09-13T06:29:20Z) - Chain of Preference Optimization: Improving Chain-of-Thought Reasoning in LLMs [37.147529569445396]
Tree-of-thought (ToT) method employs tree-searching to extensively explore the reasoning space and find better reasoning paths that CoT decoding might overlook.
Fine-tuning language models (LLMs) leveraging the search tree constructed by ToT allows CoT to achieve similar or better performance.
This is achieved through Chain of Preference Optimization (CPO), where LLMs are fine-tuned to align each step of the CoT reasoning paths with those of ToT.
arXiv Detail & Related papers (2024-06-13T14:07:02Z) - Stress Testing Chain-of-Thought Prompting for Large Language Models [0.16317061277456998]
This report examines the effectiveness of Chain-of-Thought (CoT) prompting in improving the multi-step reasoning abilities of large language models (LLMs)
We analyze the impact of three types of CoT prompt perturbations, namely CoT order, CoT values, and CoT operators on the performance of GPT-3 on various tasks.
arXiv Detail & Related papers (2023-09-28T17:21:33Z) - Evaluating and Improving Tool-Augmented Computation-Intensive Math
Reasoning [75.74103236299477]
Chain-of-thought prompting(CoT) and tool augmentation have been validated as effective practices for improving large language models.
We propose a new approach that can deliberate the reasoning steps with tool interfaces, namely textbfDELI.
Experimental results on CARP and six other datasets show that the proposed DELI mostly outperforms competitive baselines.
arXiv Detail & Related papers (2023-06-04T17:02:59Z) - Faithful Chain-of-Thought Reasoning [51.21714389639417]
Chain-of-Thought (CoT) prompting boosts Language Models' (LM) performance on a gamut of reasoning tasks.
We propose Faithful CoT, a reasoning framework involving two stages: Translation and Problem Solving.
This guarantees that the reasoning chain provides a faithful explanation of the final answer.
arXiv Detail & Related papers (2023-01-31T03:04:26Z) - Towards Understanding Chain-of-Thought Prompting: An Empirical Study of
What Matters [82.84696222087396]
Chain-of-Thought (CoT) prompting can dramatically improve the multi-step reasoning abilities of large language models (LLMs)
We show that CoT reasoning is possible even with invalid demonstrations.
arXiv Detail & Related papers (2022-12-20T05:20:54Z) - Program of Thoughts Prompting: Disentangling Computation from Reasoning
for Numerical Reasoning Tasks [108.4568236569645]
Chain-of-thoughts prompting (CoT) is by far the state-of-art method for these tasks.
We propose Program of Thoughts' (PoT), which uses language models to express the reasoning process as a program.
PoT can show an average performance gain over CoT by around 12% across all the evaluated datasets.
arXiv Detail & Related papers (2022-11-22T21:06:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.