Unlocking General Long Chain-of-Thought Reasoning Capabilities of Large Language Models via Representation Engineering
- URL: http://arxiv.org/abs/2503.11314v1
- Date: Fri, 14 Mar 2025 11:30:37 GMT
- Title: Unlocking General Long Chain-of-Thought Reasoning Capabilities of Large Language Models via Representation Engineering
- Authors: Xinyu Tang, Xiaolei Wang, Zhihao Lv, Yingqian Min, Wayne Xin Zhao, Binbin Hu, Ziqi Liu, Zhiqiang Zhang,
- Abstract summary: Existing work finds that the capability of long CoT reasoning can be efficiently elicited by tuning on only a few examples.<n>This motivates us to investigate whether long CoT reasoning is a general capability for LLMs.<n>We propose GLoRE, a novel representation engineering method to unleash the general long CoT reasoning capabilities of LLMs.
- Score: 59.34894142132706
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in long chain-of-thoughts(long CoTs) have significantly improved the reasoning capabilities of large language models(LLMs). Existing work finds that the capability of long CoT reasoning can be efficiently elicited by tuning on only a few examples and can easily transfer to other tasks. This motivates us to investigate whether long CoT reasoning is a general capability for LLMs. In this work, we conduct an empirical analysis for this question from the perspective of representation. We find that LLMs do encode long CoT reasoning as a general capability, with a clear distinction from vanilla CoTs. Furthermore, domain-specific representations are also required for the effective transfer of long CoT reasoning. Inspired by these findings, we propose GLoRE, a novel representation engineering method to unleash the general long CoT reasoning capabilities of LLMs. Extensive experiments demonstrate the effectiveness and efficiency of GLoRE in both in-domain and cross-domain scenarios.
Related papers
- When More is Less: Understanding Chain-of-Thought Length in LLMs [53.77747102201451]
Chain-of-thought (CoT) reasoning enhances the multi-step reasoning capabilities of large language models (LLMs)<n>However, for most models and tasks, does an increase in CoT length consistently lead to improved reasoning accuracy?<n>In this paper, we observe a nuanced relationship: as the number of reasoning steps increases, performance initially improves but eventually decreases.
arXiv Detail & Related papers (2025-02-11T05:28:59Z) - Efficient Reasoning with Hidden Thinking [48.96945580741641]
Chain-of-Thought (CoT) reasoning has become a powerful framework for improving complex problem-solving capabilities.<n>We propose $textbfHeima$ (as hidden llama), an efficient reasoning framework that leverages reasoning CoTs at hidden latent space.<n>Heima model achieves higher generation efficiency while maintaining or even better zero-shot task accuracy.
arXiv Detail & Related papers (2025-01-31T15:10:29Z) - To CoT or not to CoT? Chain-of-thought helps mainly on math and symbolic reasoning [55.52872152909785]
Chain-of-thought (CoT) via prompting is the de facto method for eliciting reasoning capabilities from large language models (LLMs)
We show that CoT gives strong performance benefits primarily on tasks involving math or logic, with much smaller gains on other types of tasks.
arXiv Detail & Related papers (2024-09-18T17:55:00Z) - Chain of Preference Optimization: Improving Chain-of-Thought Reasoning in LLMs [37.147529569445396]
Tree-of-thought (ToT) method employs tree-searching to extensively explore the reasoning space and find better reasoning paths that CoT decoding might overlook.
Fine-tuning language models (LLMs) leveraging the search tree constructed by ToT allows CoT to achieve similar or better performance.
This is achieved through Chain of Preference Optimization (CPO), where LLMs are fine-tuned to align each step of the CoT reasoning paths with those of ToT.
arXiv Detail & Related papers (2024-06-13T14:07:02Z) - Aggregation of Reasoning: A Hierarchical Framework for Enhancing Answer Selection in Large Language Models [84.15513004135576]
Current research enhances the reasoning performance of Large Language Models (LLMs) by sampling multiple reasoning chains and ensembling based on the answer frequency.
This approach fails in scenarios where the correct answers are in the minority.
We introduce a hierarchical reasoning aggregation framework AoR, which selects answers based on the evaluation of reasoning chains.
arXiv Detail & Related papers (2024-05-21T17:12:19Z) - The Impact of Reasoning Step Length on Large Language Models [40.546685248243534]
Chain of Thought (CoT) is significant in improving the reasoning abilities of large language models.
We investigate the correlation between the effectiveness of CoT and the length of reasoning steps in prompts.
arXiv Detail & Related papers (2024-01-10T04:37:38Z) - Towards Understanding Chain-of-Thought Prompting: An Empirical Study of
What Matters [82.84696222087396]
Chain-of-Thought (CoT) prompting can dramatically improve the multi-step reasoning abilities of large language models (LLMs)
We show that CoT reasoning is possible even with invalid demonstrations.
arXiv Detail & Related papers (2022-12-20T05:20:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.