Vista3D: Unravel the 3D Darkside of a Single Image
- URL: http://arxiv.org/abs/2409.12193v1
- Date: Wed, 18 Sep 2024 17:59:44 GMT
- Title: Vista3D: Unravel the 3D Darkside of a Single Image
- Authors: Qiuhong Shen, Xingyi Yang, Michael Bi Mi, Xinchao Wang,
- Abstract summary: Vista3D is a framework that realizes swift and consistent 3D generation within a mere 5 minutes.
In the coarse phase, we rapidly generate initial geometry with Gaussian Splatting from a single image.
It elevates the quality of generation by using a disentangled representation with two independent implicit functions.
- Score: 64.00066024235088
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We embark on the age-old quest: unveiling the hidden dimensions of objects from mere glimpses of their visible parts. To address this, we present Vista3D, a framework that realizes swift and consistent 3D generation within a mere 5 minutes. At the heart of Vista3D lies a two-phase approach: the coarse phase and the fine phase. In the coarse phase, we rapidly generate initial geometry with Gaussian Splatting from a single image. In the fine phase, we extract a Signed Distance Function (SDF) directly from learned Gaussian Splatting, optimizing it with a differentiable isosurface representation. Furthermore, it elevates the quality of generation by using a disentangled representation with two independent implicit functions to capture both visible and obscured aspects of objects. Additionally, it harmonizes gradients from 2D diffusion prior with 3D-aware diffusion priors by angular diffusion prior composition. Through extensive evaluation, we demonstrate that Vista3D effectively sustains a balance between the consistency and diversity of the generated 3D objects. Demos and code will be available at https://github.com/florinshen/Vista3D.
Related papers
- Isotropic3D: Image-to-3D Generation Based on a Single CLIP Embedding [16.50466940644004]
We present Isotropic3D, an image-to-3D generation pipeline that takes only an image CLIP embedding as input.
Isotropic3D allows the optimization to be isotropic w.r.t. the azimuth angle by solely resting on the SDS loss.
arXiv Detail & Related papers (2024-03-15T15:27:58Z) - Sculpt3D: Multi-View Consistent Text-to-3D Generation with Sparse 3D Prior [57.986512832738704]
We present a new framework Sculpt3D that equips the current pipeline with explicit injection of 3D priors from retrieved reference objects without re-training the 2D diffusion model.
Specifically, we demonstrate that high-quality and diverse 3D geometry can be guaranteed by keypoints supervision through a sparse ray sampling approach.
These two decoupled designs effectively harness 3D information from reference objects to generate 3D objects while preserving the generation quality of the 2D diffusion model.
arXiv Detail & Related papers (2024-03-14T07:39:59Z) - GaussianDreamer: Fast Generation from Text to 3D Gaussians by Bridging 2D and 3D Diffusion Models [102.22388340738536]
2D and 3D diffusion models can generate decent 3D objects based on prompts.
3D diffusion models have good 3D consistency, but their quality and generalization are limited as trainable 3D data is expensive and hard to obtain.
This paper attempts to bridge the power from the two types of diffusion models via the recent explicit and efficient 3D Gaussian splatting representation.
arXiv Detail & Related papers (2023-10-12T17:22:24Z) - SweetDreamer: Aligning Geometric Priors in 2D Diffusion for Consistent
Text-to-3D [40.088688751115214]
It is inherently ambiguous to lift 2D results from pre-trained diffusion models to a 3D world for text-to-3D generation.
We improve consistency by aligning the 2D geometric priors in diffusion models with well-defined 3D shapes during the lifting.
Our method represents a new state-of-the-art performance with an 85+% consistency rate by human evaluation.
arXiv Detail & Related papers (2023-10-04T05:59:50Z) - Magic123: One Image to High-Quality 3D Object Generation Using Both 2D
and 3D Diffusion Priors [104.79392615848109]
We present Magic123, a two-stage coarse-to-fine approach for high-quality, textured 3D meshes from a single unposed image.
In the first stage, we optimize a neural radiance field to produce a coarse geometry.
In the second stage, we adopt a memory-efficient differentiable mesh representation to yield a high-resolution mesh with a visually appealing texture.
arXiv Detail & Related papers (2023-06-30T17:59:08Z) - RenderDiffusion: Image Diffusion for 3D Reconstruction, Inpainting and
Generation [68.06991943974195]
We present RenderDiffusion, the first diffusion model for 3D generation and inference, trained using only monocular 2D supervision.
We evaluate RenderDiffusion on FFHQ, AFHQ, ShapeNet and CLEVR datasets, showing competitive performance for generation of 3D scenes and inference of 3D scenes from 2D images.
arXiv Detail & Related papers (2022-11-17T20:17:04Z) - 3D-Aware Indoor Scene Synthesis with Depth Priors [62.82867334012399]
Existing methods fail to model indoor scenes due to the large diversity of room layouts and the objects inside.
We argue that indoor scenes do not have a shared intrinsic structure, and hence only using 2D images cannot adequately guide the model with the 3D geometry.
arXiv Detail & Related papers (2022-02-17T09:54:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.