論文の概要: Multivariate Analysis of Gut Microbiota Composition and Prevalence of Gastric Cancer
- arxiv url: http://arxiv.org/abs/2409.12209v1
- Date: Wed, 18 Sep 2024 08:08:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 15:49:40.287214
- Title: Multivariate Analysis of Gut Microbiota Composition and Prevalence of Gastric Cancer
- Title(参考訳): Gut microbiota成分の多変量解析と胃癌発生率
- Authors: Aadhith Shankarnarayanan, Dheeman Gangopadhyay, Ayman Alzaatreh,
- Abstract要約: 胃癌症例の世界的な急増は、この病気の予測マーカーとして腸内細菌の可能性を調査するきっかけとなった。
消化管の多様性の変化は、胃癌のリスクの上昇と関連していると考えられている。
本研究は, 胃全摘術および胃全摘術を施行した症例を対象に, 胃癌と腸内細菌叢の相関について検討した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The global surge in the cases of gastric cancer has prompted an investigation into the potential of gut microbiota as a predictive marker for the disease. The alterations in gut diversity are suspected to be associated with an elevated risk of gastric cancer. This paper delves into finding the correlation between gut microbiota and gastric cancer, focusing on patients who have undergone total and subtotal gastrectomy. Utilizing data mining and statistical learning methods, an analysis was conducted on 16S-RNA sequenced genes obtained from 96 participants with the aim of identifying specific genera of gut microbiota associated with gastric cancer. The study reveals several prominent bacterial genera that could potentially serve as biomarkers assessing the risk of gastric cancer. These findings offer a pathway for early risk assessment and precautionary measures in the diagnosis of gastric cancer. The intricate mechanisms through which these gut microbiotas influence gastric cancer progression warrant further investigation. This research significantly aims to contribute to the growing understanding of the gut-cancer axis and its implications in disease prediction and prevention.
- Abstract(参考訳): 胃癌症例の世界的な急増は、この病気の予測マーカーとして腸内細菌の可能性を調査するきっかけとなった。
消化管の多様性の変化は、胃癌のリスクの上昇と関連していると考えられている。
本研究は, 胃全摘術および胃全摘術を施行した症例を対象に, 胃癌と腸内細菌叢の相関について検討した。
データマイニングと統計学習の手法を用いて,96名の被験者から得られた16S-RNA配列遺伝子を解析し,胃癌に関連する腸内細菌の特定の遺伝子を同定した。
この研究は、胃癌のリスクを評価するバイオマーカーとして機能する可能性のある、いくつかの著名な細菌属を明らかにした。
これらの所見は早期胃癌の診断における早期リスクアセスメントおよび予防措置の経路を提供する。
これらの腸内微生物が胃癌進行に影響を及ぼす複雑なメカニズムは、さらなる調査を保証している。
本研究は, 腸癌軸の理解の高まりと, 疾患の予知・予防への関与に大きく貢献することを目的としている。
関連論文リスト
- Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
乳がん治療計画において、グレーディングは重要な役割を担っている。
現在の腫瘍グレード法では、患者から組織を抽出し、ストレス、不快感、医療費の上昇につながる。
本稿では,CDI$s$の最適化による乳癌の診断精度の向上について検討する。
論文 参考訳(メタデータ) (2024-05-13T15:48:26Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
ネオアジュバント化学療法は乳癌の治療戦略として最近人気を集めている。
ネオアジュバント化学療法を推奨する現在のプロセスは、医療専門家の主観的評価に依存している。
本研究は, 乳癌の病理組織学的完全反応予測に最適化されたCDI$s$を応用することを検討した。
論文 参考訳(メタデータ) (2024-05-13T15:40:56Z) - Predicting breast cancer with AI for individual risk-adjusted MRI
screening and early detection [1.3367806441522678]
本稿では,現在のMRIに基づいて1年以内に乳癌の発症リスクを予測することを提案する。
検診・診断を施行した12,694例の乳房53,858例を対象にAIアルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-11-29T19:52:53Z) - Cluster-Induced Mask Transformers for Effective Opportunistic Gastric
Cancer Screening on Non-contrast CT Scans [38.46196471197819]
世界第3位の死因は胃癌である。
既存の方法は侵襲的であり、高価であり、早期胃癌を特定する感度が欠如している。
マルチタスク方式で腫瘍を共同分割し異常を分類する新規なクラスタ誘導型マスクトランスを提案する。
論文 参考訳(メタデータ) (2023-07-10T12:49:36Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
乳がんの流行は成長を続けており、2023年には米国で約30万人の女性に影響を及ぼした。
金標準のScarff-Bloom-Richardson(SBR)グレードは、化学療法に対する患者の反応を一貫して示すことが示されている。
本稿では,合成相関拡散(CDI$s$)画像を用いた乳がん鑑定における深層学習の有効性について検討する。
論文 参考訳(メタデータ) (2023-04-12T15:08:34Z) - A Multi-Institutional Open-Source Benchmark Dataset for Breast Cancer
Clinical Decision Support using Synthetic Correlated Diffusion Imaging Data [82.74877848011798]
Cancer-Net BCaは、乳がん患者の画像データであるボリュームCDI$s$の複数機関のオープンソースベンチマークデータセットである。
Cancer-Net BCaは、機械学習の進歩を加速し、がんと戦う臨床医を助ける、グローバルなオープンソースイニシアチブの一部として、一般公開されている。
論文 参考訳(メタデータ) (2023-04-12T05:41:44Z) - Artificial intelligence based prediction on lung cancer risk factors
using deep learning [0.0]
早期の症状の捕捉と定義は、患者にとって最も難しい段階の1つである。
深層学習手法を用いて,肺がんを極めて高い精度で検出できるモデルを開発した。
その結果, 精度は94%, 最小損失は0.1%であった。
論文 参考訳(メタデータ) (2023-04-11T08:57:15Z) - Machine Learning-based Lung and Colon Cancer Detection using Deep
Feature Extraction and Ensemble Learning [0.9786690381850355]
肺がんと大腸癌を効率よく同定するためのハイブリッドアンサンブル特徴抽出モデルを提案する。
深い特徴抽出とアンサンブル学習と、がん画像データセットのための高性能なフィルタリングを統合している。
本モデルでは, 99.05%, 100%, 99.30%の精度で, 肺癌, 大腸癌, 結腸癌を検出できる。
論文 参考訳(メタデータ) (2022-06-02T15:14:41Z) - Topological Data Analysis of copy number alterations in cancer [70.85487611525896]
癌ゲノム情報に含まれる情報を新しいトポロジに基づくアプローチで捉える可能性を探る。
本手法は, 癌体性遺伝データに有意な低次元表現を抽出する可能性を秘めている。
論文 参考訳(メタデータ) (2020-11-22T17:31:23Z) - Segmentation for Classification of Screening Pancreatic Neuroendocrine
Tumors [72.65802386845002]
本研究は,腹部CTで膵神経内分泌腫瘍(PNET)を早期に検出するための包括的結果を提示する。
我々の知る限りでは、このタスクは以前まで計算タスクとして研究されていなかった。
我々の手法は最先端のセグメンテーションネットワークより優れ、感度は89.47%、特異性は81.08%である。
論文 参考訳(メタデータ) (2020-04-04T21:21:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。