論文の概要: SemAI: Semantic Artificial Intelligence-enhanced DNA storage for Internet-of-Things
- arxiv url: http://arxiv.org/abs/2409.12213v1
- Date: Wed, 18 Sep 2024 12:21:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 15:49:40.217179
- Title: SemAI: Semantic Artificial Intelligence-enhanced DNA storage for Internet-of-Things
- Title(参考訳): SemAI: セマンティック人工知能によるインターネットのためのDNAストレージ
- Authors: Wenfeng Wu, Luping Xiang, Qiang Liu, Kun Yang,
- Abstract要約: 本稿では,Semantic Artificial Intelligence-enhanced DNA Storage(SemAI-DNA)パラダイムを紹介する。
数値的な結果から,SemAI-DNAの有効性が示され,従来の深層学習アプローチよりも2.61dBピーク信号-雑音比(PSNR)が向上し,構造類似度指数(SSIM)が0.13改善した。
- 参考スコア(独自算出の注目度): 9.858497777817522
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the wake of the swift evolution of technologies such as the Internet of Things (IoT), the global data landscape undergoes an exponential surge, propelling DNA storage into the spotlight as a prospective medium for contemporary cloud storage applications. This paper introduces a Semantic Artificial Intelligence-enhanced DNA storage (SemAI-DNA) paradigm, distinguishing itself from prevalent deep learning-based methodologies through two key modifications: 1) embedding a semantic extraction module at the encoding terminus, facilitating the meticulous encoding and storage of nuanced semantic information; 2) conceiving a forethoughtful multi-reads filtering model at the decoding terminus, leveraging the inherent multi-copy propensity of DNA molecules to bolster system fault tolerance, coupled with a strategically optimized decoder's architectural framework. Numerical results demonstrate the SemAI-DNA's efficacy, attaining 2.61 dB Peak Signal-to-Noise Ratio (PSNR) gain and 0.13 improvement in Structural Similarity Index (SSIM) over conventional deep learning-based approaches.
- Abstract(参考訳): IoT(Internet of Things)などのテクノロジの急速な進化に伴い、グローバルなデータランドスケープは急激な急増を経験し、現代のクラウドストレージアプリケーションのための先進的な媒体として、DNAストレージをスポットライトに突きつけている。
本稿では,Semantic Artificial Intelligence-enhanced DNA Storage(SemAI-DNA)パラダイムを紹介する。
1) 意味抽出モジュールをエンコード終端に埋め込み,ニュアンスド・セマンティクス情報の簡潔なエンコーディング及び保存を容易にする。
2) 決定的に最適化されたデコーダのアーキテクチャフレームワークと組み合わさって, システムフォールトトレランスの促進にDNA分子のマルチコピー性を活用する, 復号終端における有望なマルチリードフィルタリングモデルを構築した。
数値的な結果から,SemAI-DNAの有効性が示され,従来の深層学習手法に比べて2.61dBピーク信号-雑音比(PSNR)が向上し,構造類似度指数(SSIM)が0.13改善した。
関連論文リスト
- Unlocking Potential Binders: Multimodal Pretraining DEL-Fusion for Denoising DNA-Encoded Libraries [51.72836644350993]
マルチモーダルプレトレーニング DEL-Fusion Model (MPDF)
我々は,異なる複合表現とそれらのテキスト記述の対比対象を適用した事前学習タスクを開発する。
本稿では, 原子, 分子, 分子レベルでの複合情報をアマルガメートする新しいDEL融合フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-07T17:32:21Z) - Enhancing Motor Imagery Decoding in Brain Computer Interfaces using
Riemann Tangent Space Mapping and Cross Frequency Coupling [5.860347939369221]
運動画像(MI)は脳コンピュータインタフェース(BCI)の領域における重要な実験パラダイムである
本稿では,MI特徴量に関する表現品質と復号化能力を向上させるための新しい手法を提案する。
さらに特徴抽出と分類のために軽量畳み込みニューラルネットワークが使用され、クロスエントロピーとセンターロスの共同管理の下で動作している。
論文 参考訳(メタデータ) (2023-10-29T23:37:47Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
ニューラルネットワークのための新しいヘテロジニアスメモリ拡張手法を提案する。
学習可能なメモリトークンをアテンション機構付きで導入することにより、膨大な計算オーバーヘッドを伴わずに性能を効果的に向上させることができる。
In-distriion (ID) と Out-of-distriion (OOD) の両方の条件下での様々な画像およびグラフベースのタスクに対するアプローチを示す。
論文 参考訳(メタデータ) (2023-10-17T01:05:28Z) - Deep DNA Storage: Scalable and Robust DNA Storage via Coding Theory and
Deep Learning [49.3231734733112]
シミュレーションデータに基づいてトレーニングされたDeep Neural Networks(DNN)、Product(TP)ベースのエラー修正コード(ECC)、安全マージンを1つのコヒーレントパイプラインに組み合わせたモジュラーで総合的なアプローチを示す。
我々の研究は, 最大で x3200 の速度向上, 40%の精度向上により, 現在の指導的ソリューションの改善を実現し, 高雑音下では1ベースあたり1.6ビットのコードレートを提供する。
論文 参考訳(メタデータ) (2021-08-31T18:21:20Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Efficient approximation of DNA hybridisation using deep learning [0.0]
本研究は,DNAハイブリダイゼーションの予測に応用された機械学習手法の総合的研究である。
機械学習アルゴリズムの広い範囲の使用を可能にする2.5百万以上のデータポイントの合成ハイブリッド化データセットを紹介します。
論文 参考訳(メタデータ) (2021-02-19T19:23:49Z) - Understanding Self-supervised Learning with Dual Deep Networks [74.92916579635336]
本稿では,2組の深層ReLUネットワークを用いたコントラスト型自己教師学習(SSL)手法を理解するための新しい枠組みを提案する。
種々の損失関数を持つSimCLRの各SGD更新において、各層の重みは共分散演算子によって更新されることを示す。
共分散演算子の役割と、そのようなプロセスでどのような特徴が学習されるかをさらに研究するために、我々は、階層的潜在木モデル(HLTM)を用いて、データ生成および増大過程をモデル化する。
論文 参考訳(メタデータ) (2020-10-01T17:51:49Z) - Sparse Coding Driven Deep Decision Tree Ensembles for Nuclear
Segmentation in Digital Pathology Images [15.236873250912062]
デジタル病理画像セグメンテーションタスクにおいて、ディープニューラルネットワークと高い競争力を持つ、容易に訓練されながら強力な表現学習手法を提案する。
ScD2TEと略すこの手法はスパースコーディング駆動の深層決定木アンサンブルと呼ばれ、表現学習の新しい視点を提供する。
論文 参考訳(メタデータ) (2020-08-13T02:59:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。