論文の概要: Context-Aware Doubly-Robust Semi-Supervised Learning
- arxiv url: http://arxiv.org/abs/2502.15577v1
- Date: Fri, 21 Feb 2025 16:38:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 16:09:27.438954
- Title: Context-Aware Doubly-Robust Semi-Supervised Learning
- Title(参考訳): 文脈を意識した2自由度半教師付き学習
- Authors: Clement Ruah, Houssem Sifaou, Osvaldo Simeone, Bashir Al-Hashimi,
- Abstract要約: 本稿では,NDTの相互信頼度に擬似データに依存する新しい半教師付きスキームであるCDR学習について紹介する。
CDRをダウンリンクビームフォーミングのタスクで評価し、従来の最先端の半教師ありアプローチと比較して優れた性能を示す。
- 参考スコア(独自算出の注目度): 30.633865572324154
- License:
- Abstract: The widespread adoption of artificial intelligence (AI) in next-generation communication systems is challenged by the heterogeneity of traffic and network conditions, which call for the use of highly contextual, site-specific, data. A promising solution is to rely not only on real-world data, but also on synthetic pseudo-data generated by a network digital twin (NDT). However, the effectiveness of this approach hinges on the accuracy of the NDT, which can vary widely across different contexts. To address this problem, this paper introduces context-aware doubly-robust (CDR) learning, a novel semi-supervised scheme that adapts its reliance on the pseudo-data to the different levels of fidelity of the NDT across contexts. CDR is evaluated on the task of downlink beamforming, showing superior performance compared to previous state-of-the-art semi-supervised approaches.
- Abstract(参考訳): 次世代通信システムにおける人工知能(AI)の普及は、高度にコンテキストに依存したサイト固有のデータの使用を要求されるトラフィックとネットワーク条件の不均一性によって問題視されている。
有望な解決策は、実世界のデータだけでなく、ネットワークデジタルツイン(NDT)によって生成された合成擬似データにも頼ることである。
しかし, この手法の有効性は, NDT の精度に左右される。
この問題に対処するため,本稿では,コンテキスト間のNDTの忠実度が異なるレベルに擬似データに依存する新しい半教師付きスキームである,文脈対応ダブルロバスト学習(CDR)を提案する。
CDRをダウンリンクビームフォーミングのタスクで評価し、従来の最先端の半教師ありアプローチと比較して優れた性能を示す。
関連論文リスト
- World-Consistent Data Generation for Vision-and-Language Navigation [52.08816337783936]
VLN(Vision-and-Language Navigation)は、自然言語の指示に従って、エージェントがフォトリアリスティックな環境をナビゲートする必要がある課題である。
VLNの主な障害はデータの不足であり、目に見えない環境における一般化性能の低下につながる。
多様性と世界整合性の両方を満たす効率的なデータ拡張フレームワークである世界整合データ生成(WCGEN)を提案する。
論文 参考訳(メタデータ) (2024-12-09T11:40:54Z) - Artificial Inductive Bias for Synthetic Tabular Data Generation in Data-Scarce Scenarios [8.062368743143388]
本稿では,限られた実データ環境下でDGM(Deep Generative Models)を用いて,現実的で信頼性の高い合成データを生成する手法を提案する。
本稿では,移動学習とメタ学習技術を用いて,DGMにおける人工的帰納バイアスを生成する方法を提案する。
我々は,2つの最先端DGM,すなわち変分オートエンコーダとジェネレーティブ・アダクティブ・アダクティブ・ネットワークを用いて,人工的帰納バイアスがより優れた合成データ品質をもたらすことを示す。
論文 参考訳(メタデータ) (2024-07-03T12:53:42Z) - Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
本稿では,強化学習に基づくエージェント駆動型ジェネリックセマンティックコミュニケーションフレームワークを提案する。
本研究では, エージェント支援型セマンティックエンコーダを開発し, 適応的セマンティック抽出とサンプリングを行う。
設計モデルの有効性をUA-DETRACデータセットを用いて検証し、全体的なA-GSCフレームワークの性能向上を実証した。
論文 参考訳(メタデータ) (2024-04-10T13:24:27Z) - Real-GDSR: Real-World Guided DSM Super-Resolution via Edge-Enhancing Residual Network [2.3020018305241337]
低解像度デジタルサーフェスモデル(DSM)は、ノイズ、センサーの制限、データ取得条件の影響を受けやすい特性を特徴とする。
このため、合成データで訓練された超解像モデルは、実データでは効果的に機能しない。
本稿では,REAL-GDSRと呼ばれる実世界のDSM超解像の複雑さに対処する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-04-05T07:24:10Z) - Towards Assessing the Synthetic-to-Measured Adversarial Vulnerability of
SAR ATR [16.144102386839574]
本稿では,S2M(Synthetic-to-measured)転送設定について検討し,攻撃者が合成データのみに基づいて逆方向の摂動を発生させ,測定データを用いて訓練された被害者モデルに対して転送する。
また, この難易度の高いシナリオにおいて, 敵のリスクを明らかにするために, 転送可能性推定攻撃(TEA)を提案する。
論文 参考訳(メタデータ) (2024-01-30T14:16:24Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
デジタルツイン(DT)は、物理世界の仮想表現と通信(例えば6G)、コンピュータ、人工知能(AI)技術を活用して、多くの接続されたインテリジェンスサービスを実現する。
無線システムは、厳密な通信制約下での情報意思決定を容易にするために意味コミュニケーション(SC)のパラダイムを利用することができる。
DTベースの無線システムでは,因果意味通信(CSC)と呼ばれる新しいフレームワークが提案されている。
論文 参考訳(メタデータ) (2023-04-25T00:15:00Z) - Unpaired Adversarial Learning for Single Image Deraining with Rain-Space
Contrastive Constraints [61.40893559933964]
我々は,CDR-GAN という名称の GAN フレームワークにおいて,比較学習手法により,経験者の相互特性を探索する有効な非経験的 SID 手法を開発した。
提案手法は, 合成および実世界の両方のデータセットにおいて, 既存の非対効果のデラミニング手法に対して良好に動作し, 完全教師付きモデルや半教師付きモデルよりも優れている。
論文 参考訳(メタデータ) (2021-09-07T10:00:45Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Learning a Domain-Agnostic Visual Representation for Autonomous Driving
via Contrastive Loss [25.798361683744684]
ドメイン認識コントラスト学習(Domain-Agnostic Contrastive Learning、DACL)は、2段階の非監視ドメイン適応フレームワークである。
提案手法は,従来の最新手法に比べ,単眼深度推定作業における性能向上を実現した。
論文 参考訳(メタデータ) (2021-03-10T07:06:03Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
本稿では,TRED(Target-Awareness Representation Disentanglement)の概念を取り入れた新しいトランスファー学習アルゴリズムを提案する。
TREDは、対象のタスクに関する関連する知識を元のソースモデルから切り離し、ターゲットモデルを微調整する際、レギュレータとして使用する。
各種実世界のデータセットを用いた実験により,本手法は標準微調整を平均2%以上安定的に改善することが示された。
論文 参考訳(メタデータ) (2020-10-16T17:45:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。