SemAI: Semantic Artificial Intelligence-enhanced DNA storage for Internet-of-Things
- URL: http://arxiv.org/abs/2409.12213v1
- Date: Wed, 18 Sep 2024 12:21:58 GMT
- Title: SemAI: Semantic Artificial Intelligence-enhanced DNA storage for Internet-of-Things
- Authors: Wenfeng Wu, Luping Xiang, Qiang Liu, Kun Yang,
- Abstract summary: This paper introduces a Semantic Artificial Intelligence-enhanced DNA storage (SemAI-DNA) paradigm, distinguishing itself from prevalent deep learning-based methodologies.
Numerical results demonstrate the SemAI-DNA's efficacy, attaining 2.61 dB Peak Signal-to-Noise Ratio (PSNR) gain and 0.13 improvement in Structural Similarity Index (SSIM) over conventional deep learning-based approaches.
- Score: 9.858497777817522
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the wake of the swift evolution of technologies such as the Internet of Things (IoT), the global data landscape undergoes an exponential surge, propelling DNA storage into the spotlight as a prospective medium for contemporary cloud storage applications. This paper introduces a Semantic Artificial Intelligence-enhanced DNA storage (SemAI-DNA) paradigm, distinguishing itself from prevalent deep learning-based methodologies through two key modifications: 1) embedding a semantic extraction module at the encoding terminus, facilitating the meticulous encoding and storage of nuanced semantic information; 2) conceiving a forethoughtful multi-reads filtering model at the decoding terminus, leveraging the inherent multi-copy propensity of DNA molecules to bolster system fault tolerance, coupled with a strategically optimized decoder's architectural framework. Numerical results demonstrate the SemAI-DNA's efficacy, attaining 2.61 dB Peak Signal-to-Noise Ratio (PSNR) gain and 0.13 improvement in Structural Similarity Index (SSIM) over conventional deep learning-based approaches.
Related papers
- Unlocking Potential Binders: Multimodal Pretraining DEL-Fusion for Denoising DNA-Encoded Libraries [51.72836644350993]
Multimodal Pretraining DEL-Fusion model (MPDF)
We develop pretraining tasks applying contrastive objectives between different compound representations and their text descriptions.
We propose a novel DEL-fusion framework that amalgamates compound information at the atomic, submolecular, and molecular levels.
arXiv Detail & Related papers (2024-09-07T17:32:21Z) - Enhancing Motor Imagery Decoding in Brain Computer Interfaces using
Riemann Tangent Space Mapping and Cross Frequency Coupling [5.860347939369221]
Motor Imagery (MI) serves as a crucial experimental paradigm within the realm of Brain Computer Interfaces (BCIs)
This paper introduces a novel approach to enhance the representation quality and decoding capability pertaining to MI features.
A lightweight convolutional neural network is employed for further feature extraction and classification, operating under the joint supervision of cross-entropy and center loss.
arXiv Detail & Related papers (2023-10-29T23:37:47Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
We introduce a novel heterogeneous memory augmentation approach for neural networks.
By introducing learnable memory tokens with attention mechanism, we can effectively boost performance without huge computational overhead.
We show our approach on various image and graph-based tasks under both in-distribution (ID) and out-of-distribution (OOD) conditions.
arXiv Detail & Related papers (2023-10-17T01:05:28Z) - Deep DNA Storage: Scalable and Robust DNA Storage via Coding Theory and
Deep Learning [49.3231734733112]
We show a modular and holistic approach that combines Deep Neural Networks (DNN) trained on simulated data, Product (TP) based Error-Correcting Codes (ECC) and a safety margin into a single coherent pipeline.
Our work improves upon the current leading solutions by up to x3200 increase in speed, 40% improvement in accuracy, and offers a code rate of 1.6 bits per base in a high noise regime.
arXiv Detail & Related papers (2021-08-31T18:21:20Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Efficient approximation of DNA hybridisation using deep learning [0.0]
We present the first comprehensive study of machine learning methods applied to the task of predicting DNA hybridisation.
We introduce a synthetic hybridisation dataset of over 2.5 million data points, enabling the use of a wide range of machine learning algorithms.
arXiv Detail & Related papers (2021-02-19T19:23:49Z) - Understanding Self-supervised Learning with Dual Deep Networks [74.92916579635336]
We propose a novel framework to understand contrastive self-supervised learning (SSL) methods that employ dual pairs of deep ReLU networks.
We prove that in each SGD update of SimCLR with various loss functions, the weights at each layer are updated by a emphcovariance operator.
To further study what role the covariance operator plays and which features are learned in such a process, we model data generation and augmentation processes through a emphhierarchical latent tree model (HLTM)
arXiv Detail & Related papers (2020-10-01T17:51:49Z) - Sparse Coding Driven Deep Decision Tree Ensembles for Nuclear
Segmentation in Digital Pathology Images [15.236873250912062]
We propose an easily trained yet powerful representation learning approach with performance highly competitive to deep neural networks in a digital pathology image segmentation task.
The method, called sparse coding driven deep decision tree ensembles that we abbreviate as ScD2TE, provides a new perspective on representation learning.
arXiv Detail & Related papers (2020-08-13T02:59:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.