Exploring single-photon recoil on free electrons
- URL: http://arxiv.org/abs/2409.12216v1
- Date: Wed, 18 Sep 2024 16:45:17 GMT
- Title: Exploring single-photon recoil on free electrons
- Authors: Alexander Preimesberger, Dominik Hornof, Theo Dorfner, Thomas Schachinger, Martin Hrtoň, Andrea Konečná, Philipp Haslinger,
- Abstract summary: We present experimental investigations of energy-momentum conservation and the corresponding dispersion relation on the single particle level, achieved through coincidence detection of electron-photon pairs.
This not only enables unprecedented clarity in detecting weak signals otherwise obscured by non-radiative processes but also provides a new experimental pathway to explore entanglement within electron-photon pairs.
- Score: 36.136619420474766
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in time-resolved electron and photon detection enable novel correlative measurements of electrons and their associated cathodoluminescence (CL) photons within a transmission electron microscope. These studies are pivotal for understanding the underlying physics in coherent CL processes. We present experimental investigations of energy-momentum conservation and the corresponding dispersion relation on the single particle level, achieved through coincidence detection of electron-photon pairs. This not only enables unprecedented clarity in detecting weak signals otherwise obscured by non-radiative processes but also provides a new experimental pathway to investigate momentum-position correlations to explore entanglement within electron-photon pairs.
Related papers
- Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Entanglement of annihilation photons [141.5628276096321]
We present the results of a new experimental study of the quantum entanglement of photon pairs produced in positron-electron annihilation at rest.
Despite numerous measurements, there is still no experimental proof of the entanglement of photons.
arXiv Detail & Related papers (2022-10-14T08:21:55Z) - Single quantum emitters with spin ground states based on Cl bound
excitons in ZnSe [55.41644538483948]
We show a new type of single photon emitter with potential electron spin qubit based on Cl impurities inSe.
Results suggest single Cl impurities are suitable as single photon source with potential photonic interface.
arXiv Detail & Related papers (2022-03-11T04:29:21Z) - Cavity-mediated electron-photon pairs [0.0]
Advancing quantum information, communication and sensing relies on the generation and control of quantum correlations.
We demonstrate the preparation of electron-photon pair states using the phase-matched interaction of free electrons with the evanescent vacuum field of a photonic-chip-based optical microresonator.
arXiv Detail & Related papers (2022-02-25T16:55:36Z) - One-dimensional ghost imaging with an electron microscope: a route
towards ghost imaging with inelastically scattered electrons [0.0]
Inelastic scattering can be reanalyzed in terms of correlation between the electron beam and the sample.
We propose to exploit joint measurement in electron microscopy for a surprising and counter-intuitive application of the concept of ghost imaging.
arXiv Detail & Related papers (2021-06-14T23:30:39Z) - Investigating the coherent state detection probability of InGaAs/InP
SPAD-based single-photon detectors [55.41644538483948]
We investigate the probabilities of detecting single- and multi-photon coherent states on InGaAs/InP sine-gated and free-run avalanche diodes.
We conclude that multi-photon state detection cannot be regarded as independent events of absorption of individual single-photon states.
arXiv Detail & Related papers (2021-04-16T08:08:48Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Ultrafast non-destructive measurement of the quantum state of light
using free electrons [0.0]
We propose using free electrons for quantum-optical detection of the complete quantum state of light.
We show how the precise control of the electron before and after its interaction with quantum light enables to extract the photon statistics.
Our work paves the way to novel kinds of photodetectors that utilize the ultrafast duration, high nonlinearity, and non-destructive nature of electron-light interactions.
arXiv Detail & Related papers (2020-12-22T14:59:31Z) - Optical Excitations with Electron Beams: Challenges and Opportunities [0.0]
We provide an overview of photonics research based on free electrons, supplemented by original theoretical insights.
We show that the excitation probability by a single electron is independent of its wave function, apart from a classical average over the transverse beam density profile.
We conclude with perspectives on various exciting directions for disruptive approaches to non-invasive spectroscopy and microscopy.
arXiv Detail & Related papers (2020-10-26T12:08:32Z) - Strong interaction of slow electrons with near-field light visited from
first principles [0.0]
We show enhanced coupling can be achieved for systems involving slow electron wavepackets interacting with plasmonic nanoparticles.
Our findings pave the way towards a systematic and realistic understanding of electron-light interactions beyond adiabatic approximations.
arXiv Detail & Related papers (2020-03-31T11:18:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.