Cavity-mediated electron-photon pairs
- URL: http://arxiv.org/abs/2202.12821v2
- Date: Tue, 1 Mar 2022 17:11:04 GMT
- Title: Cavity-mediated electron-photon pairs
- Authors: A. Feist, G. Huang, G. Arend, Y. Yang, J.-W. Henke, A. S. Raja, F. J.
Kappert, R. N. Wang, H. Louren\c{c}o-Martins, Z. Qiu, J. Liu, O. Kfir, T. J.
Kippenberg, C. Ropers
- Abstract summary: Advancing quantum information, communication and sensing relies on the generation and control of quantum correlations.
We demonstrate the preparation of electron-photon pair states using the phase-matched interaction of free electrons with the evanescent vacuum field of a photonic-chip-based optical microresonator.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advancing quantum information, communication and sensing relies on the
generation and control of quantum correlations in complementary degrees of
freedom. Here, we demonstrate the preparation of electron-photon pair states
using the phase-matched interaction of free electrons with the evanescent
vacuum field of a photonic-chip-based optical microresonator. Spontaneous
inelastic scattering produces intracavity photons coincident with
energy-shifted electrons. Harnessing these pairs for correlation-enhanced
imaging, we achieve a two-orders of magnitude contrast improvement in
cavity-mode mapping by coincidence-gated electron spectroscopy. This parametric
pair-state preparation will underpin the future development of free-electron
quantum optics, providing a pathway to quantum-enhanced imaging,
electron-photon entanglement, and heralded single-electron and Fock-state
photon sources.
Related papers
- Electrons herald non-classical light [0.44270590458998854]
We demonstrate the coherent parametric generation of non-classical states of light by free electrons.
We show that the quantized electron energy loss heralds the number of photons generated in a dielectric waveguide.
The approach facilitates the tailored preparation of higher-number Fock and other optical quantum states.
arXiv Detail & Related papers (2024-09-17T15:55:54Z) - Electron-assisted manipulation of polaritonic light-matter states [0.0]
We investigate strong light-matter coupling through monochromatic and modulated electron wavepackets.
In particular, we consider an archetypal target, comprising a nanophotonic cavity next to a single two-level emitter.
We show the power of modulated electrons beams as quantum tools for the manipulation of polaritonic targets.
arXiv Detail & Related papers (2023-12-11T16:28:32Z) - Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Single quantum emitters with spin ground states based on Cl bound
excitons in ZnSe [55.41644538483948]
We show a new type of single photon emitter with potential electron spin qubit based on Cl impurities inSe.
Results suggest single Cl impurities are suitable as single photon source with potential photonic interface.
arXiv Detail & Related papers (2022-03-11T04:29:21Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Integrated photonics enables continuous-beam electron phase modulation [0.0]
Integrated photonics can efficiently interface free electrons and light.
We demonstrate coherent phase modulation of an electron beam using a silicon nitride microresonator driven by a continuous-wave laser.
Our results highlight the potential of integrated photonics to efficiently interface free electrons and light.
arXiv Detail & Related papers (2021-05-08T16:17:01Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Quantum control of entangled photon-pair generation in electron-atom
collisions driven by laser-synthesized free-electron wave packets [0.0]
We propose an extension of coherent control using laser-synthesized free-electron matter waves.
We report coherent control of entangled photon-pair generation in radiative photo-cascade emission upon decay of the target atom.
arXiv Detail & Related papers (2020-11-19T04:30:19Z) - Directional emission of down-converted photons from a dielectric
nano-resonator [55.41644538483948]
We theoretically describe the generation of photon pairs in the process of spontaneous parametric down-conversion.
We reveal that highly directional photon-pair generation can be observed utilising the nonlinear Kerker-type effect.
arXiv Detail & Related papers (2020-11-16T10:30:04Z) - Free-Electron Shaping Using Quantum Light [0.0]
Here, we show that control over electron pulse shaping, compression, and statistics can be improved by replacing coherent laser excitation by interaction with quantum light.
We find that compression is accelerated for fixed optical intensity by using phase-squeezed light, while amplitude squeezing produces ultrashort double-pulse profiles.
The generated electron pulses exhibit periodic revivals in complete analogy to the optical Talbot effect.
arXiv Detail & Related papers (2020-08-03T15:35:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.