Chaos and spatial prethermalization in driven-dissipative bosonic chains
- URL: http://arxiv.org/abs/2409.12225v2
- Date: Mon, 30 Dec 2024 16:06:38 GMT
- Title: Chaos and spatial prethermalization in driven-dissipative bosonic chains
- Authors: Filippo Ferrari, Fabrizio Minganti, Camille Aron, Vincenzo Savona,
- Abstract summary: We investigate the spatial aspect of thermalization in quantum many-body systems.
We uncover a two-stage thermalization process along the spatial dimension.
We argue that similar prethermal chaotic phases are likely to occur in a broad range of extended driven-dissipative systems.
- Score: 0.0
- License:
- Abstract: Thermalization in quantum many-body systems, the process by which they naturally evolve toward thermal equilibrium, typically unfolds over timescales set by the underlying relaxation mechanisms. Yet, the spatial aspect of thermalization in these systems is less understood. We investigate this phenomenon within the nonequilibrium steady state (NESS) of a Bose-Hubbard chain subject at its boundaries to coherent driving and dissipation, a setup inspired by current designs in circuit quantum electrodynamics. We uncover a two-stage thermalization process along the spatial dimension. Close to the coherent drive, the U(1) symmetry of the phase of the photonic field is restored over a short length scale, while its amplitude relaxes over a much larger scale. This opens up an extensive region of the chain where the photon density remains high, and the chaotic dynamics give rise to a hydrodynamic regime, characterized by local equilibria with a large and slowly-varying effective chemical potential. Dynamical fingerprints of chaos in this NESS are probed using semiclassical out-of-time-order correlators (OTOCs) within the truncated Wigner approximation (TWA). We explore the conditions underlying this protracted thermalization in space and argue that similar prethermal chaotic phases are likely to occur in a broad range of extended driven-dissipative systems.
Related papers
- Quantum Avalanches in $\mathbb{Z}_2$-preserving Interacting Ising Majorana Chain [13.135604356093193]
Recent numerical works have revealed the instability of many-body localized (MBL) phase in disordered quantum many-body systems.
This instability arises from Griffith regions that occur at the limit, which rapidly thermalize and affect the surrounding typical MBL regions.
We show that both MBL paramagnetic phase and MBL spin-glass phase are unstable at finite sizes.
arXiv Detail & Related papers (2025-01-10T15:54:26Z) - Nonequilibrium relaxation exponentially delays the onset of quantum diffusion [0.0]
We exploit a recent breakthrough that generalizes the concept of memory beyond its conventional temporal meaning to also encompass space.
We employ the dynamics of small lattices over short times to predict the dynamics of thermodynamically large lattices over arbitrarily long timescales.
We also compare transport in 1D and 2D systems to investigate the effect of dimension in polaron migration physics.
arXiv Detail & Related papers (2024-11-26T01:09:23Z) - Information scrambling and entanglement dynamics in Floquet Time Crystals [49.1574468325115]
We study the dynamics of out-of-time-ordered correlators (OTOCs) and entanglement of entropy as measures of information propagation in disordered systems.
arXiv Detail & Related papers (2024-11-20T17:18:42Z) - Exponentially slow thermalization and the robustness of Hilbert space
fragmentation [3.074411226628252]
We study how thermalization occurs in situations where the constraints are not exact.
For product states quenched under Hamiltonian dynamics, we numerically observe an exponentially long thermalization time.
Slow thermalization in this model is shown to be a consequence of strong bottlenecks in configuration space.
arXiv Detail & Related papers (2024-01-20T18:40:20Z) - Emergence of fluctuating hydrodynamics in chaotic quantum systems [47.187609203210705]
macroscopic fluctuation theory (MFT) was recently developed to model the hydrodynamics of fluctuations.
We perform large-scale quantum simulations that monitor the full counting statistics of particle-number fluctuations in boson ladders.
Our results suggest that large-scale fluctuations of isolated quantum systems display emergent hydrodynamic behavior.
arXiv Detail & Related papers (2023-06-20T11:26:30Z) - Finite-size subthermal regime in disordered SU(N)-symmetric Heisenberg
chains [0.0]
We extend previous studies of the SU(2)-symmetric disordered Heisenberg model to larger systems.
We simulate quench dynamics from weakly entangled initial states up to long times, finding robust subthermal behavior at stronger disorder.
Our findings demonstrate the robustness of the subthermal regime in spin chains with non-Abelian continuous symmetry.
arXiv Detail & Related papers (2023-04-06T14:26:05Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Prethermalization in one-dimensional quantum many-body systems with
confinement [0.0]
Unconventional nonequilibrium phases with restricted correlation spreading and slow entanglement growth have been proposed to emerge in systems with confined excitations.
Here, we show that in confined systems the thermalization dynamics after a quantum quench instead exhibits multiple stages with well separated time scales.
The discussed prethermalization dynamics is directly relevant to generic one-dimensional, many-body systems with confined excitations
arXiv Detail & Related papers (2022-02-25T19:01:02Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.