Ground states of strongly-correlated materials on quantum computers using ab initio downfolding
- URL: http://arxiv.org/abs/2409.12237v1
- Date: Wed, 18 Sep 2024 18:00:04 GMT
- Title: Ground states of strongly-correlated materials on quantum computers using ab initio downfolding
- Authors: Antonios M. Alvertis, Abid Khan, Norm M. Tubman,
- Abstract summary: Ab initio downfolding has emerged as a way of deriving accurate many-body Hamiltonians.
We propose that utilizing quantum computers for obtaining the properties of downfolded Hamiltonians yields an accurate description of the ground state properties of strongly-correlated systems.
- Score: 1.2912607909040075
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The accurate first-principles description of strongly-correlated materials is an important and challenging problem in condensed matter physics. Ab initio downfolding has emerged as a way of deriving accurate many-body Hamiltonians including strong correlations, representing a subspace of interest of a material, using density functional theory calculations as a starting point. However, the solution of these material-specific models can scale exponentially on classical computers, constituting a challenge. Here we propose that utilizing quantum computers for obtaining the properties of downfolded Hamiltonians yields an accurate description of the ground state properties of strongly-correlated systems, while circumventing the exponential scaling problem. We demonstrate this for diverse strongly-correlated materials by combining ab initio downfolding and variational quantum eigensolvers, correctly predicting the antiferromagnetic state of one-dimensional cuprate $\text{Ca}_2\text{CuO}_3$, the excitonic ground state of monolayer $\text{WTe}_2$, and the charge-ordered state of correlated metal $\text{SrVO}_3$. By utilizing a classical tensor network implementation of variational quantum eigensolvers we are able to simulate large models with up to $54$ qubits and encompassing up to four bands in the correlated subspace, which is indicative of the complexity that our framework can address.
Related papers
- Self-Consistent Determination of Single-Impurity Anderson Model Using Hybrid Quantum-Classical Approach on a Spin Quantum Simulator [3.5919681412083038]
In this paper, we experimentally demonstrate a hybrid quantum-classical approach to correlated materials.
We address the most computationally demanding aspect of the calculation, namely the computation of the Green's function.
As the number of qubits with high control fidelity continues to grow, our experimental findings pave the way for solving even more complex models.
arXiv Detail & Related papers (2024-10-10T10:49:40Z) - Quantifying fault tolerant simulation of strongly correlated systems using the Fermi-Hubbard model [31.805673346157665]
Building a holistic understanding of strongly correlated materials is critical.
Fault-tolerant quantum computers have been proposed as a path forward to overcome these difficulties.
We estimate the resource costs needed to use fault-tolerant quantum computers for obtaining experimentally relevant quantities.
arXiv Detail & Related papers (2024-06-10T17:50:56Z) - Entanglement with neutral atoms in the simulation of nonequilibrium dynamics of one-dimensional spin models [0.0]
We study the generation and role of entanglement in the dynamics of spin-1/2 models.
We introduce the neutral atom Molmer-Sorensen gate, involving rapid adiabatic Rydberg dressing interleaved in a spin-echo sequence.
In quantum simulation, we consider critical behavior in quench dynamics of transverse field Ising models.
arXiv Detail & Related papers (2024-06-07T23:29:16Z) - Real-time Dynamics of the Schwinger Model as an Open Quantum System with Neural Density Operators [1.0713888959520208]
This work develops machine learning algorithms to overcome the difficulty of approximating exact quantum states with neural network parametrisations.
As a proof of principle demonstration in a QCD-like theory, the approach is applied to solve the Lindblad master equation in the 1+1d lattice Schwinger Model as an open quantum system.
arXiv Detail & Related papers (2024-02-09T18:36:17Z) - Simulating 2D lattice gauge theories on a qudit quantum computer [2.2246996966725305]
We present a quantum computation of the properties of the basic building block of two-dimensional lattice quantum electrodynamics.
This is made possible by the use of a trapped-ion qudit quantum processor.
Qudits are ideally suited for describing gauge fields, which are naturally high-dimensional.
arXiv Detail & Related papers (2023-10-18T17:06:35Z) - Quantum tomography of helicity states for general scattering processes [55.2480439325792]
Quantum tomography has become an indispensable tool in order to compute the density matrix $rho$ of quantum systems in Physics.
We present the theoretical framework for reconstructing the helicity quantum initial state of a general scattering process.
arXiv Detail & Related papers (2023-10-16T21:23:42Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Spectral density reconstruction with Chebyshev polynomials [77.34726150561087]
We show how to perform controllable reconstructions of a finite energy resolution with rigorous error estimates.
This paves the way for future applications in nuclear and condensed matter physics.
arXiv Detail & Related papers (2021-10-05T15:16:13Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Graph Neural Network for Hamiltonian-Based Material Property Prediction [56.94118357003096]
We present and compare several different graph convolution networks that are able to predict the band gap for inorganic materials.
The models are developed to incorporate two different features: the information of each orbital itself and the interaction between each other.
The results show that our model can get a promising prediction accuracy with cross-validation.
arXiv Detail & Related papers (2020-05-27T13:32:10Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.