Provable In-Context Learning of Linear Systems and Linear Elliptic PDEs with Transformers
- URL: http://arxiv.org/abs/2409.12293v2
- Date: Sun, 13 Oct 2024 17:12:10 GMT
- Title: Provable In-Context Learning of Linear Systems and Linear Elliptic PDEs with Transformers
- Authors: Frank Cole, Yulong Lu, Riley O'Neill, Tianhao Zhang,
- Abstract summary: Foundation models for natural language processing, powered by the transformer architecture, exhibit remarkable in-context learning capabilities.
We develop a rigorous error analysis for transformer-based ICL applied to solution operators associated with a family of linear elliptic PDEs.
We quantify the adaptability of the pre-trained transformer on downstream PDE tasks that experience distribution shifts.
- Score: 9.208766125523612
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Foundation models for natural language processing, powered by the transformer architecture, exhibit remarkable in-context learning (ICL) capabilities, allowing pre-trained models to adapt to downstream tasks using few-shot prompts without updating their weights. Recently, transformer-based foundation models have also emerged as versatile tools for solving scientific problems, particularly in the realm of partial differential equations (PDEs). However, the theoretical foundations of the ICL capabilities in these scientific models remain largely unexplored. This work develops a rigorous error analysis for transformer-based ICL applied to solution operators associated with a family of linear elliptic PDEs. We first demonstrate that a linear transformer, defined by a linear self-attention layer, can provably learn in-context to invert linear systems arising from the spatial discretization of PDEs. This is achieved by deriving theoretical scaling laws for the prediction risk of the proposed linear transformers in terms of spatial discretization size, the number of training tasks, and the lengths of prompts used during training and inference. These scaling laws also enable us to establish quantitative error bounds for learning PDE solutions. Furthermore, we quantify the adaptability of the pre-trained transformer on downstream PDE tasks that experience distribution shifts in both tasks (represented by PDE coefficients) and input covariates (represented by the source term). To analyze task distribution shifts, we introduce a novel concept of task diversity and characterize the transformer's prediction error in terms of the magnitude of task shift, assuming sufficient diversity in the pre-training tasks. We also establish sufficient conditions to ensure task diversity. Finally, we validate the ICL-capabilities of transformers through extensive numerical experiments.
Related papers
- Provably Transformers Harness Multi-Concept Word Semantics for Efficient In-Context Learning [53.685764040547625]
Transformer-based large language models (LLMs) have displayed remarkable creative prowess and emergence capabilities.
This work provides a fine mathematical analysis to show how transformers leverage the multi-concept semantics of words to enable powerful ICL and excellent out-of-distribution ICL abilities.
arXiv Detail & Related papers (2024-11-04T15:54:32Z) - Interpreting Affine Recurrence Learning in GPT-style Transformers [54.01174470722201]
In-context learning allows GPT-style transformers to generalize during inference without modifying their weights.
This paper focuses specifically on their ability to learn and predict affine recurrences as an ICL task.
We analyze the model's internal operations using both empirical and theoretical approaches.
arXiv Detail & Related papers (2024-10-22T21:30:01Z) - DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
We introduce DimOL (Dimension-aware Operator Learning), drawing insights from dimensional analysis.
To implement DimOL, we propose the ProdLayer, which can be seamlessly integrated into FNO-based and Transformer-based PDE solvers.
Empirically, DimOL models achieve up to 48% performance gain within the PDE datasets.
arXiv Detail & Related papers (2024-10-08T10:48:50Z) - DeltaPhi: Learning Physical Trajectory Residual for PDE Solving [54.13671100638092]
We propose and formulate the Physical Trajectory Residual Learning (DeltaPhi)
We learn the surrogate model for the residual operator mapping based on existing neural operator networks.
We conclude that, compared to direct learning, physical residual learning is preferred for PDE solving.
arXiv Detail & Related papers (2024-06-14T07:45:07Z) - Transformers as Neural Operators for Solutions of Differential Equations with Finite Regularity [1.6874375111244329]
We first establish the theoretical groundwork that transformers possess the universal approximation property as operator learning models.
In particular, we consider three examples: the Izhikevich neuron model, the tempered fractional-order Leaky Integrate-and-Fire (LIFLIF) model, and the one-dimensional equation Euler problem.
arXiv Detail & Related papers (2024-05-29T15:10:24Z) - Asymptotic theory of in-context learning by linear attention [33.53106537972063]
In-context learning is a cornerstone of Transformers' success.
Questions about the necessary sample complexity, pretraining task diversity, and context length for successful ICL remain unresolved.
arXiv Detail & Related papers (2024-05-20T03:24:24Z) - How Do Nonlinear Transformers Learn and Generalize in In-Context Learning? [82.51626700527837]
Transformer-based large language models displayed impressive in-context learning capabilities, where a pre-trained model can handle new tasks without fine-tuning.
We analyze how the mechanics of how Transformer to achieve ICL contribute to the technical challenges of the training problems in Transformers.
arXiv Detail & Related papers (2024-02-23T21:07:20Z) - HAMLET: Graph Transformer Neural Operator for Partial Differential Equations [13.970458554623939]
We present a novel graph transformer framework, HAMLET, designed to address the challenges in solving partial differential equations (PDEs) using neural networks.
The framework uses graph transformers with modular input encoders to directly incorporate differential equation information into the solution process.
Notably, HAMLET scales effectively with increasing data complexity and noise, showcasing its robustness.
arXiv Detail & Related papers (2024-02-05T21:55:24Z) - Transformers as Statisticians: Provable In-Context Learning with
In-Context Algorithm Selection [88.23337313766353]
This work first provides a comprehensive statistical theory for transformers to perform ICL.
We show that transformers can implement a broad class of standard machine learning algorithms in context.
A emphsingle transformer can adaptively select different base ICL algorithms.
arXiv Detail & Related papers (2023-06-07T17:59:31Z) - Effects of Parameter Norm Growth During Transformer Training: Inductive
Bias from Gradient Descent [44.44543743806831]
We study the tendency for transformer parameters to grow in magnitude while saturated between these norms during training.
As the parameters grow in magnitude, we prove that the network approximates a discretized network with saturated activation functions.
Our results suggest saturation is a new characterization of an inductive bias implicit in GD of particular interest for NLP.
arXiv Detail & Related papers (2020-10-19T17:40:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.