論文の概要: ReFu: Recursive Fusion for Exemplar-Free 3D Class-Incremental Learning
- arxiv url: http://arxiv.org/abs/2409.12326v1
- Date: Wed, 18 Sep 2024 21:44:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 15:26:10.181767
- Title: ReFu: Recursive Fusion for Exemplar-Free 3D Class-Incremental Learning
- Title(参考訳): ReFu: 初歩的な3Dクラスインクリメンタルラーニングのための再帰的融合
- Authors: Yi Yang, Lei Zhong, Huiping Zhuang,
- Abstract要約: ReFuと呼ばれる新しいRecursive Fusionモデルを導入し、3Dクラスインクリメンタルラーニングのためのポイントクラウドとメッシュを統合した。
本稿では,2つのモード間の相関関係を学習するPointcloud-Guided Mesh Attention Layerを特徴とする融合モジュールを提案する。
各種データセットを対象とした実験により,提案手法が3次元クラスインクリメンタル学習において既存手法より優れていることが示された。
- 参考スコア(独自算出の注目度): 22.918894897067574
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel Recursive Fusion model, dubbed ReFu, designed to integrate point clouds and meshes for exemplar-free 3D Class-Incremental Learning, where the model learns new 3D classes while retaining knowledge of previously learned ones. Unlike existing methods that either rely on storing historical data to mitigate forgetting or focus on single data modalities, ReFu eliminates the need for exemplar storage while utilizing the complementary strengths of both point clouds and meshes. To achieve this, we introduce a recursive method which continuously accumulates knowledge by updating the regularized auto-correlation matrix. Furthermore, we propose a fusion module, featuring a Pointcloud-guided Mesh Attention Layer that learns correlations between the two modalities. This mechanism effectively integrates point cloud and mesh features, leading to more robust and stable continual learning. Experiments across various datasets demonstrate that our proposed framework outperforms existing methods in 3D class-incremental learning. Project Page: https://arlo397.github.io/ReFu/
- Abstract(参考訳): 我々はReFuと呼ばれる新しいRecursive Fusionモデルを導入し、3Dクラス増分学習のためのポイントクラウドとメッシュを統合する。
忘れを軽減したり、単一のデータモダリティに集中するための履歴データの保存に依存する既存の方法とは異なり、ReFuは、ポイントクラウドとメッシュの相補的な強みを活用しながら、模範的なストレージの必要性を排除している。
そこで本研究では,正規化された自己相関行列を更新することにより,知識を継続的に蓄積する再帰的手法を提案する。
さらに,2つのモード間の相関関係を学習するPointcloud-Guided Mesh Attention Layerを特徴とする融合モジュールを提案する。
このメカニズムは、ポイントクラウドとメッシュ機能を効果的に統合し、より堅牢で安定した継続的学習をもたらす。
各種データセットを対象とした実験により,提案手法が3次元クラスインクリメンタル学習において既存手法より優れていることが示された。
Project Page: https://arlo397.github.io/ReFu/
関連論文リスト
- Semi-supervised Single-view 3D Reconstruction via Multi Shape Prior Fusion Strategy and Self-Attention [0.0]
半教師付き学習戦略はラベル付きデータへの依存を減らす革新的なアプローチを提供する。
我々は3次元再構成のための革新的なフレームワークを作成した。
当社のフレームワークでは,ベースラインよりも3.3%パフォーマンスが向上した。
論文 参考訳(メタデータ) (2024-11-23T02:46:16Z) - Foundation Model-Powered 3D Few-Shot Class Incremental Learning via Training-free Adaptor [9.54964908165465]
本稿では,3Dポイントクラウド環境におけるFew-Shot連続インクリメンタルラーニング問題に対処する新しい手法を提案する。
私たちは、ポイントクラウドデータに基づいて広範囲にトレーニングされた基礎的な3Dモデルを活用します。
このアプローチでは、二重キャッシュシステムを使用します。まず、モデルの予測にどれだけ自信があるかに基づいて、以前のテストサンプルを使用し、次に、オーバーフィッティングを防ぐために、少数の新しいタスクサンプルを含んでいます。
論文 参考訳(メタデータ) (2024-10-11T20:23:00Z) - Hierarchical Temporal Context Learning for Camera-based Semantic Scene Completion [57.232688209606515]
カメラによるセマンティックシーンの補完を改善するための,新たな時間的文脈学習パラダイムであるHTCLを提案する。
提案手法は,Semantic KITTIベンチマークで1st$をランク付けし,mIoUの点でLiDARベースの手法を超えている。
論文 参考訳(メタデータ) (2024-07-02T09:11:17Z) - StarNet: Style-Aware 3D Point Cloud Generation [82.30389817015877]
StarNetは、マッピングネットワークを使用して高忠実度および3Dポイントクラウドを再構築し、生成することができる。
我々のフレームワークは、クラウドの再構築と生成タスクにおいて、様々なメトリクスで同等の最先端のパフォーマンスを達成します。
論文 参考訳(メタデータ) (2023-03-28T08:21:44Z) - CLR-GAM: Contrastive Point Cloud Learning with Guided Augmentation and
Feature Mapping [12.679625717350113]
本稿では、効率的な動的探索戦略のためのガイド拡張(GA)を備えた対照的な学習ベースのフレームワークであるCLR-GAMを提案する。
提案手法がシミュレーションおよび実世界の3Dポイントクラウドデータセット上で最先端のパフォーマンスを実現することを実証的に実証した。
論文 参考訳(メタデータ) (2023-02-28T04:38:52Z) - CMD: Self-supervised 3D Action Representation Learning with Cross-modal
Mutual Distillation [130.08432609780374]
3D行動認識では、骨格のモダリティの間に豊富な相補的な情報が存在する。
本稿では,CMD(Cross-modal Mutual Distillation)フレームワークを提案する。
提案手法は,既存の自己管理手法より優れ,新しい記録を多数設定する。
論文 参考訳(メタデータ) (2022-08-26T06:06:09Z) - Learning-based Point Cloud Registration for 6D Object Pose Estimation in
the Real World [55.7340077183072]
我々は、ポイントクラウドデータからオブジェクトの6Dポーズを推定するタスクに取り組む。
この課題に対処する最近の学習ベースのアプローチは、合成データセットにおいて大きな成功を収めている。
これらの障害の原因を分析し、ソースとターゲットポイントの雲の特徴分布の違いに遡る。
論文 参考訳(メタデータ) (2022-03-29T07:55:04Z) - IDEA-Net: Dynamic 3D Point Cloud Interpolation via Deep Embedding
Alignment [58.8330387551499]
我々は、点方向軌跡(すなわち滑らかな曲線)の推定として問題を定式化する。
本稿では,学習した時間的一貫性の助けを借りて問題を解消する,エンドツーエンドのディープラーニングフレームワークであるIDEA-Netを提案する。
各種点群における本手法の有効性を実証し, 定量的かつ視覚的に, 最先端の手法に対する大幅な改善を観察する。
論文 参考訳(メタデータ) (2022-03-22T10:14:08Z) - Static-Dynamic Co-Teaching for Class-Incremental 3D Object Detection [71.18882803642526]
ディープラーニングアプローチは、3Dオブジェクト検出タスクにおいて顕著なパフォーマンスを示している。
古いデータを再考することなく、新しいクラスを漸進的に学習するときに、破滅的なパフォーマンス低下に悩まされる。
この「破滅的な忘れ物」現象は、現実世界のシナリオにおける3Dオブジェクト検出アプローチの展開を妨げる。
SDCoTは,新しい静的なコティーチング手法である。
論文 参考訳(メタデータ) (2021-12-14T09:03:41Z) - Point Transformer for Shape Classification and Retrieval of 3D and ALS
Roof PointClouds [3.3744638598036123]
本稿では,リッチポイントクラウド表現の導出を目的とした,完全注意モデルであるem Point Transformerを提案する。
モデルの形状分類と検索性能は,大規模都市データセット - RoofN3D と標準ベンチマークデータセット ModelNet40 で評価される。
提案手法は、RoofN3Dデータセットの他の最先端モデルよりも優れており、ModelNet40ベンチマークで競合する結果を与え、目に見えない点の破損に対して高い堅牢性を示す。
論文 参考訳(メタデータ) (2020-11-08T08:11:02Z) - Two-Level Residual Distillation based Triple Network for Incremental
Object Detection [21.725878050355824]
本稿では,より高速なR-CNNに基づく新しいインクリメンタルオブジェクト検出手法を提案する。
従来の学習知識を忘れることなく、新しいクラスでの漸進的なモデル学習を支援するためのアシスタントとして、古いモデルと残留モデルを使用する三重ネットワークである。
論文 参考訳(メタデータ) (2020-07-27T11:04:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。