論文の概要: Axial Attention Transformer Networks: A New Frontier in Breast Cancer Detection
- arxiv url: http://arxiv.org/abs/2409.12347v1
- Date: Wed, 18 Sep 2024 22:40:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 15:14:47.194244
- Title: Axial Attention Transformer Networks: A New Frontier in Breast Cancer Detection
- Title(参考訳): Axial Attention Transformer Networks: 乳癌検出の新しいフロンティア
- Authors: Weijie He, Runyuan Bao, Yiru Cang, Jianjun Wei, Yang Zhang, Jiacheng Hu,
- Abstract要約: 筆者らは,従来の畳み込みニューラルネットワーク(CNN)の限界に対処する,トランスフォーマーに基づくセグメンテーションモデルを提案する。
このモデルは、計算効率を高め、CNNがしばしば見落としているグローバルな文脈情報の問題に対処する軸的注意機構を導入する。
提案モデルは,乳がん画像のセグメント化精度を大幅に向上することを目的としており,コンピュータ支援診断のためのより効率的かつ効果的なツールを提供する。
- 参考スコア(独自算出の注目度): 5.283911891304296
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper delves into the challenges and advancements in the field of medical image segmentation, particularly focusing on breast cancer diagnosis. The authors propose a novel Transformer-based segmentation model that addresses the limitations of traditional convolutional neural networks (CNNs), such as U-Net, in accurately localizing and segmenting small lesions within breast cancer images. The model introduces an axial attention mechanism to enhance the computational efficiency and address the issue of global contextual information that is often overlooked by CNNs. Additionally, the paper discusses improvements tailored to the small dataset challenge, including the incorporation of relative position information and a gated axial attention mechanism to refine the model's focus on relevant features. The proposed model aims to significantly improve the segmentation accuracy of breast cancer images, offering a more efficient and effective tool for computer-aided diagnosis.
- Abstract(参考訳): 本稿では,特に乳癌の診断に焦点をあてて,医用画像のセグメンテーション分野における課題と進歩について考察する。
U-Netのような従来の畳み込みニューラルネットワーク(CNN)の限界に対処するトランスフォーマーベースのセグメンテーションモデルを提案する。
このモデルは、計算効率を高め、CNNがしばしば見落としているグローバルな文脈情報の問題に対処する軸的注意機構を導入する。
さらに,本論文では,相対的位置情報の導入や,関連する特徴に焦点を絞るゲート軸アテンション機構など,小さなデータセット課題に合わせた改良について論じる。
提案モデルは,乳がん画像のセグメント化精度を大幅に向上することを目的としており,コンピュータ支援診断のためのより効率的かつ効果的なツールを提供する。
関連論文リスト
- EfficientNet with Hybrid Attention Mechanisms for Enhanced Breast Histopathology Classification: A Comprehensive Approach [0.0]
本稿では,ハイブリット・エフィシエント・ネットモデルと高度な注意機構を統合し,特徴抽出を強化し,重要な画像領域に焦点を当てた新しいアプローチを提案する。
利用可能な病理組織学データセットを用いて,複数の拡大スケールでモデルの性能を評価する。
その結果, 精度, F1スコア, 精度, リコールなどの指標を用いて評価し, 診断精度を向上させる上での本モデルの有効性を実証した。
論文 参考訳(メタデータ) (2024-10-29T17:56:05Z) - A Novel Approach to Chest X-ray Lung Segmentation Using U-net and Modified Convolutional Block Attention Module [0.46040036610482665]
本稿では,胸部X線像におけるU-netと注意機構を統合した肺分画の新しいアプローチを提案する。
提案手法は,CBAM(Convolutional Block Attention Module)を組み込むことで,U-netアーキテクチャを向上する。
CBAMとU-netアーキテクチャの採用は、医用画像の分野で大きな進歩を見せている。
論文 参考訳(メタデータ) (2024-04-22T16:33:06Z) - Harnessing The Power of Attention For Patch-Based Biomedical Image Classification [0.0]
本稿では,従来のCNNの代替として,自己認識機構に基づく新しいアーキテクチャを提案する。
可変画像サイズを高解像度に適応させるLancoz5手法を提案する。
提案手法は、誘導バイアス、重み共有、受容場制限、効率的なデータハンドリングなど、注意に基づく視覚モデルが直面する重要な課題に対処する。
論文 参考訳(メタデータ) (2024-04-01T06:22:28Z) - Polar-Net: A Clinical-Friendly Model for Alzheimer's Disease Detection
in OCTA Images [53.235117594102675]
オプティカルコヒーレンス・トモグラフィーは、網膜微小血管の画像化によってアルツハイマー病(AD)を検出するための有望なツールである。
我々はPolar-Netと呼ばれる新しいディープラーニングフレームワークを提案し、解釈可能な結果を提供し、臨床上の事前知識を活用する。
Polar-Netは既存の最先端の手法よりも優れており,網膜血管変化とADとの関連性について,より貴重な病理学的証拠を提供する。
論文 参考訳(メタデータ) (2023-11-10T11:49:49Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
気道セグメンテーションは肺疾患の検査、診断、予後に重要である。
いくつかの小型の気道支線(気管支や終端など)は自動セグメンテーションの難しさを著しく増す。
本稿では,新しいファジィアテンションニューラルネットワークと包括的損失関数を備える,気道セグメンテーションの効率的な手法を提案する。
論文 参考訳(メタデータ) (2022-09-05T16:38:13Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z) - RCA-IUnet: A residual cross-spatial attention guided inception U-Net
model for tumor segmentation in breast ultrasound imaging [0.6091702876917281]
本稿では,腫瘍セグメンテーションのトレーニングパラメータが最小限に抑えられたRCA-IUnetモデルについて紹介する。
RCA-IUnetモデルは、U-Netトポロジに従い、奥行きの深い分離可能な畳み込みとハイブリッドプール層を持つ。
無関係な特徴を抑え、対象構造に焦点を合わせるために、空間横断型アテンションフィルタが加えられる。
論文 参考訳(メタデータ) (2021-08-05T10:35:06Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Automatic Segmentation of Gross Target Volume of Nasopharynx Cancer
using Ensemble of Multiscale Deep Neural Networks with Spatial Attention [2.204996105506197]
平面内分解能と平面内分解能の差に対処する2.5次元畳み込みニューラルネットワーク(CNN)を提案する。
また,ネットワークが小さなターゲットにフォーカスできる空間的アテンションモジュールを提案し,チャネルアテンションを用いてセグメンテーション性能をさらに向上する。
論文 参考訳(メタデータ) (2021-01-27T08:20:49Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
本研究では,小腫瘍認識ネットワーク(Small tumor-Aware Network,STAN)と呼ばれる新しいディープラーニングアーキテクチャを提案する。
提案手法は, 乳腺腫瘍の分節化における最先端のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-02-03T22:25:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。