論文の概要: A Novel Approach to Chest X-ray Lung Segmentation Using U-net and Modified Convolutional Block Attention Module
- arxiv url: http://arxiv.org/abs/2404.14322v2
- Date: Tue, 7 May 2024 13:21:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 18:53:50.453938
- Title: A Novel Approach to Chest X-ray Lung Segmentation Using U-net and Modified Convolutional Block Attention Module
- Title(参考訳): U-net と Modified Convolutional Block Attention Module を用いた胸部X線肺分画の新しいアプローチ
- Authors: Mohammad Ali Labbaf Khaniki, Mohammad Manthouri,
- Abstract要約: 本稿では,胸部X線像におけるU-netと注意機構を統合した肺分画の新しいアプローチを提案する。
提案手法は,CBAM(Convolutional Block Attention Module)を組み込むことで,U-netアーキテクチャを向上する。
CBAMとU-netアーキテクチャの採用は、医用画像の分野で大きな進歩を見せている。
- 参考スコア(独自算出の注目度): 0.46040036610482665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lung segmentation in chest X-ray images is of paramount importance as it plays a crucial role in the diagnosis and treatment of various lung diseases. This paper presents a novel approach for lung segmentation in chest X-ray images by integrating U-net with attention mechanisms. The proposed method enhances the U-net architecture by incorporating a Convolutional Block Attention Module (CBAM), which unifies three distinct attention mechanisms: channel attention, spatial attention, and pixel attention. The channel attention mechanism enables the model to concentrate on the most informative features across various channels. The spatial attention mechanism enhances the model's precision in localization by focusing on significant spatial locations. Lastly, the pixel attention mechanism empowers the model to focus on individual pixels, further refining the model's focus and thereby improving the accuracy of segmentation. The adoption of the proposed CBAM in conjunction with the U-net architecture marks a significant advancement in the field of medical imaging, with potential implications for improving diagnostic precision and patient outcomes. The efficacy of this method is validated against contemporary state-of-the-art techniques, showcasing its superiority in segmentation performance.
- Abstract(参考訳): 胸部X線像における肺分画は,様々な肺疾患の診断と治療において重要な役割を担っている。
本稿では,胸部X線像におけるU-netと注意機構を統合した肺分画の新しいアプローチを提案する。
提案手法は, チャネルアテンション, 空間アテンション, ピクセルアテンションの3つの異なるアテンション機構を統一したCBAM (Convolutional Block Attention Module) を組み込むことにより, U-net アーキテクチャを強化する。
チャネルアテンション機構により、モデルは様々なチャネルにまたがる最も情報性の高い特徴に集中することができる。
空間的注意機構は、重要な空間的位置に着目して、モデルの局所化における精度を高める。
最後に、画素アテンション機構により、モデルを個々のピクセルに集中させ、モデルのフォーカスをさらに洗練し、セグメンテーションの精度を向上させる。
CBAMとU-netアーキテクチャの併用は医療画像の分野で大きな進歩を遂げ、診断精度の向上や患者の予後向上に寄与する可能性が示唆された。
本手法の有効性は現代の最先端技術に対して検証され,セグメンテーション性能の優位性を示す。
関連論文リスト
- Multi-dimension Transformer with Attention-based Filtering for Medical Image Segmentation [16.491730188616323]
医用画像セグメンテーションのためのアテンションベースフィルタ(MDT-AF)を用いた多次元変換器を提案する。
MDT-AFは、注意に基づく特徴フィルタリング機構をパッチ埋め込みブロックに組み込んでおり、低信号対雑音比の影響を軽減するために粗粒度プロセスを採用している。
3つの公開医用画像セグメンテーションベンチマークによる実験結果から, MDT-AFがSOTA(State-of-the-art)の性能を達成することが示された。
論文 参考訳(メタデータ) (2024-05-20T18:52:41Z) - Hierarchical SegNet with Channel and Context Attention for Accurate Lung Segmentation in Chest X-ray Images [0.40964539027092917]
胸部X線像における肺セグメンテーションは、様々な肺疾患の正確な診断と治療を可能にする医療画像解析において重要な課題である。
本稿では,階層型セグネットとマルチモーダルアテンション機構を組み合わせた肺セグメンテーション手法を提案する。
実験により,本手法は肺分画作業における最先端性能を達成し,既存手法より優れていたことを示す。
論文 参考訳(メタデータ) (2024-05-20T18:29:41Z) - CV-Attention UNet: Attention-based UNet for 3D Cerebrovascular Segmentation of Enhanced TOF-MRA Images [2.2265536092123006]
脳血管画像の正確な抽出にはCV-AttentionUNetと呼ばれる3次元脳血管注意UNet法を提案する。
低と高のセマンティクスを組み合わせるために,注意機構を適用した。
このアルゴリズムの新規性は、ラベル付きデータとラベルなしデータの両方でうまく機能する能力にあると考えています。
論文 参考訳(メタデータ) (2023-11-16T22:31:05Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
気道セグメンテーションは肺疾患の検査、診断、予後に重要である。
いくつかの小型の気道支線(気管支や終端など)は自動セグメンテーションの難しさを著しく増す。
本稿では,新しいファジィアテンションニューラルネットワークと包括的損失関数を備える,気道セグメンテーションの効率的な手法を提案する。
論文 参考訳(メタデータ) (2022-09-05T16:38:13Z) - Large-Kernel Attention for 3D Medical Image Segmentation [14.76728117630242]
本稿では,多臓器分割と腫瘍分割を正確に行うために,新しいLKアテンションモジュールを提案する。
畳み込みと自己注意の利点は、局所的な文脈情報、長距離依存、チャネル適応を含むLKアテンションモジュールで組み合わせられる。
モジュールはまた、計算コストを最適化するためにLK畳み込みを分解し、U-NetのようなFCNに簡単に組み込むことができる。
論文 参考訳(メタデータ) (2022-07-19T16:32:55Z) - Multimodal Multi-Head Convolutional Attention with Various Kernel Sizes
for Medical Image Super-Resolution [56.622832383316215]
超解像CTおよびMRIスキャンのための新しいマルチヘッド畳み込みアテンションモジュールを提案する。
我々の注目モジュールは、畳み込み操作を用いて、複数の入力テンソルに対して共同的な空間チャネルアテンションを行う。
それぞれの頭部は空間的注意に対する特定の減少率に応じた受容野の大きさの異なる複数の注意ヘッドを導入している。
論文 参考訳(メタデータ) (2022-04-08T07:56:55Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - RCA-IUnet: A residual cross-spatial attention guided inception U-Net
model for tumor segmentation in breast ultrasound imaging [0.6091702876917281]
本稿では,腫瘍セグメンテーションのトレーニングパラメータが最小限に抑えられたRCA-IUnetモデルについて紹介する。
RCA-IUnetモデルは、U-Netトポロジに従い、奥行きの深い分離可能な畳み込みとハイブリッドプール層を持つ。
無関係な特徴を抑え、対象構造に焦点を合わせるために、空間横断型アテンションフィルタが加えられる。
論文 参考訳(メタデータ) (2021-08-05T10:35:06Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z) - Unsupervised Instance Segmentation in Microscopy Images via Panoptic
Domain Adaptation and Task Re-weighting [86.33696045574692]
病理組織像における教師なし核分割のためのCycle Consistency Panoptic Domain Adaptive Mask R-CNN(CyC-PDAM)アーキテクチャを提案する。
まず,合成画像中の補助的な生成物を除去するための核塗布機構を提案する。
第二に、ドメイン識別器を持つセマンティックブランチは、パンプトレベルのドメイン適応を実現するように設計されている。
論文 参考訳(メタデータ) (2020-05-05T11:08:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。