Privacy-Preserving Student Learning with Differentially Private Data-Free Distillation
- URL: http://arxiv.org/abs/2409.12384v1
- Date: Thu, 19 Sep 2024 01:00:18 GMT
- Title: Privacy-Preserving Student Learning with Differentially Private Data-Free Distillation
- Authors: Bochao Liu, Jianghu Lu, Pengju Wang, Junjie Zhang, Dan Zeng, Zhenxing Qian, Shiming Ge,
- Abstract summary: We present an effective teacher-student learning approach to train privacy-preserving deep learning models.
Massive synthetic data can be generated for model training without exposing data privacy.
A student is trained on the synthetic data with the supervision of private labels.
- Score: 35.37005050907983
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models can achieve high inference accuracy by extracting rich knowledge from massive well-annotated data, but may pose the risk of data privacy leakage in practical deployment. In this paper, we present an effective teacher-student learning approach to train privacy-preserving deep learning models via differentially private data-free distillation. The main idea is generating synthetic data to learn a student that can mimic the ability of a teacher well-trained on private data. In the approach, a generator is first pretrained in a data-free manner by incorporating the teacher as a fixed discriminator. With the generator, massive synthetic data can be generated for model training without exposing data privacy. Then, the synthetic data is fed into the teacher to generate private labels. Towards this end, we propose a label differential privacy algorithm termed selective randomized response to protect the label information. Finally, a student is trained on the synthetic data with the supervision of private labels. In this way, both data privacy and label privacy are well protected in a unified framework, leading to privacy-preserving models. Extensive experiments and analysis clearly demonstrate the effectiveness of our approach.
Related papers
- FT-PrivacyScore: Personalized Privacy Scoring Service for Machine Learning Participation [4.772368796656325]
In practice, controlled data access remains a mainstream method for protecting data privacy in many industrial and research environments.
We developed the demo prototype FT-PrivacyScore to show that it's possible to efficiently and quantitatively estimate the privacy risk of participating in a model fine-tuning task.
arXiv Detail & Related papers (2024-10-30T02:41:26Z) - Learning Privacy-Preserving Student Networks via Discriminative-Generative Distillation [24.868697898254368]
Deep models may pose a privacy leakage risk in practical deployment.
We propose a discriminative-generative distillation approach to learn privacy-preserving deep models.
Our approach can control query cost over private data and accuracy degradation in a unified manner.
arXiv Detail & Related papers (2024-09-04T03:06:13Z) - LLM-based Privacy Data Augmentation Guided by Knowledge Distillation
with a Distribution Tutor for Medical Text Classification [67.92145284679623]
We propose a DP-based tutor that models the noised private distribution and controls samples' generation with a low privacy cost.
We theoretically analyze our model's privacy protection and empirically verify our model.
arXiv Detail & Related papers (2024-02-26T11:52:55Z) - Approximate, Adapt, Anonymize (3A): a Framework for Privacy Preserving
Training Data Release for Machine Learning [3.29354893777827]
We introduce a data release framework, 3A (Approximate, Adapt, Anonymize), to maximize data utility for machine learning.
We present experimental evidence showing minimal discrepancy between performance metrics of models trained on real versus privatized datasets.
arXiv Detail & Related papers (2023-07-04T18:37:11Z) - Differentially Private Synthetic Data Generation via
Lipschitz-Regularised Variational Autoencoders [3.7463972693041274]
It is often overlooked that generative models are prone to memorising many details of individual training records.
In this paper we explore an alternative approach for privately generating data that makes direct use of the inherentity in generative models.
arXiv Detail & Related papers (2023-04-22T07:24:56Z) - Students Parrot Their Teachers: Membership Inference on Model
Distillation [54.392069096234074]
We study the privacy provided by knowledge distillation to both the teacher and student training sets.
Our attacks are strongest when student and teacher sets are similar, or when the attacker can poison the teacher set.
arXiv Detail & Related papers (2023-03-06T19:16:23Z) - Position: Considerations for Differentially Private Learning with Large-Scale Public Pretraining [75.25943383604266]
We question whether the use of large Web-scraped datasets should be viewed as differential-privacy-preserving.
We caution that publicizing these models pretrained on Web data as "private" could lead to harm and erode the public's trust in differential privacy as a meaningful definition of privacy.
We conclude by discussing potential paths forward for the field of private learning, as public pretraining becomes more popular and powerful.
arXiv Detail & Related papers (2022-12-13T10:41:12Z) - SF-PATE: Scalable, Fair, and Private Aggregation of Teacher Ensembles [50.90773979394264]
This paper studies a model that protects the privacy of individuals' sensitive information while also allowing it to learn non-discriminatory predictors.
A key characteristic of the proposed model is to enable the adoption of off-the-selves and non-private fair models to create a privacy-preserving and fair model.
arXiv Detail & Related papers (2022-04-11T14:42:54Z) - Private Knowledge Transfer via Model Distillation with Generative
Adversarial Networks [7.0202040971648705]
A conventional deep learning model is prone to privacy attacks that can recover the sensitive information of individuals.
Recently, differential privacy that offers provable privacy guarantees has been proposed to train neural networks in a privacy-labelled manner to protect training data.
We present a novel private knowledge transfer strategy, where the private teacher trained on sensitive data is not publicly accessible but teaches a student to be publicly released.
arXiv Detail & Related papers (2020-04-05T12:55:01Z) - Differentially Private Deep Learning with Smooth Sensitivity [144.31324628007403]
We study privacy concerns through the lens of differential privacy.
In this framework, privacy guarantees are generally obtained by perturbing models in such a way that specifics of data used to train the model are made ambiguous.
One of the most important techniques used in previous works involves an ensemble of teacher models, which return information to a student based on a noisy voting procedure.
In this work, we propose a novel voting mechanism with smooth sensitivity, which we call Immutable Noisy ArgMax, that, under certain conditions, can bear very large random noising from the teacher without affecting the useful information transferred to the student
arXiv Detail & Related papers (2020-03-01T15:38:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.