HSIGene: A Foundation Model For Hyperspectral Image Generation
- URL: http://arxiv.org/abs/2409.12470v2
- Date: Fri, 1 Nov 2024 04:59:31 GMT
- Title: HSIGene: A Foundation Model For Hyperspectral Image Generation
- Authors: Li Pang, Xiangyong Cao, Datao Tang, Shuang Xu, Xueru Bai, Feng Zhou, Deyu Meng,
- Abstract summary: Hyperspectral image (HSI) plays a vital role in various fields such as agriculture and environmental monitoring.
Due to the expensive acquisition cost, the number of hyperspectral images is limited, degenerating the performance of downstream tasks.
We propose HSIGene, a novel HSI generation foundation model which is based on latent diffusion and supports multi-condition control.
Experiments demonstrate that the proposed model is capable of generating a vast quantity of realistic HSIs for downstream tasks such as denoising and super-resolution.
- Score: 46.745198868466545
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyperspectral image (HSI) plays a vital role in various fields such as agriculture and environmental monitoring. However, due to the expensive acquisition cost, the number of hyperspectral images is limited, degenerating the performance of downstream tasks. Although some recent studies have attempted to employ diffusion models to synthesize HSIs, they still struggle with the scarcity of HSIs, affecting the reliability and diversity of the generated images. Some studies propose to incorporate multi-modal data to enhance spatial diversity, but the spectral fidelity cannot be ensured. In addition, existing HSI synthesis models are typically uncontrollable or only support single-condition control, limiting their ability to generate accurate and reliable HSIs. To alleviate these issues, we propose HSIGene, a novel HSI generation foundation model which is based on latent diffusion and supports multi-condition control, allowing for more precise and reliable HSI generation. To enhance the spatial diversity of the training data while preserving spectral fidelity, we propose a new data augmentation method based on spatial super-resolution, in which HSIs are upscaled first, and thus abundant training patches could be obtained by cropping the high-resolution HSIs. In addition, to improve the perceptual quality of the augmented data, we introduce a novel two-stage HSI super-resolution framework, which first applies RGB bands super-resolution and then utilizes our proposed Rectangular Guided Attention Network (RGAN) for guided HSI super-resolution. Experiments demonstrate that the proposed model is capable of generating a vast quantity of realistic HSIs for downstream tasks such as denoising and super-resolution. The code and models are available at https://github.com/LiPang/HSIGene.
Related papers
- A Hybrid Registration and Fusion Method for Hyperspectral Super-resolution [0.913509220304172]
We propose a hybrid registration and fusion model named RAF-NLRGS.
The RAF model incorporates a constrained group sparsity to harness valuable information embedded in the residual data group.
We also present the framework of Generalized Gauss-Newton (GGN) algorithm and Proximal Alternating Optimization (PAO)
arXiv Detail & Related papers (2024-07-07T06:36:19Z) - HyperSIGMA: Hyperspectral Intelligence Comprehension Foundation Model [88.13261547704444]
Hyper SIGMA is a vision transformer-based foundation model for HSI interpretation.
It integrates spatial and spectral features using a specially designed spectral enhancement module.
It shows significant advantages in scalability, robustness, cross-modal transferring capability, and real-world applicability.
arXiv Detail & Related papers (2024-06-17T13:22:58Z) - Diffusion-based generation of Histopathological Whole Slide Images at a
Gigapixel scale [10.481781668319886]
Synthetic Whole Slide Images (WSIs) can augment training datasets to enhance the performance of many computational applications.
No existing deep-learning-based method generates WSIs at their typically high resolutions.
We present a novel coarse-to-fine sampling scheme to tackle image generation of high-resolution WSIs.
arXiv Detail & Related papers (2023-11-14T14:33:39Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
arXiv Detail & Related papers (2023-07-26T07:45:14Z) - Unsupervised Hyperspectral and Multispectral Images Fusion Based on the
Cycle Consistency [21.233354336608205]
We propose an unsupervised HSI and MSI fusion model based on the cycle consistency, called CycFusion.
The CycFusion learns the domain transformation between low spatial resolution HSI (LrHSI) and high spatial resolution MSI (HrMSI)
Experiments conducted on several datasets show that our proposed model outperforms all compared unsupervised fusion methods.
arXiv Detail & Related papers (2023-07-07T06:47:15Z) - HDNet: High-resolution Dual-domain Learning for Spectral Compressive
Imaging [138.04956118993934]
We propose a high-resolution dual-domain learning network (HDNet) for HSI reconstruction.
On the one hand, the proposed HR spatial-spectral attention module with its efficient feature fusion provides continuous and fine pixel-level features.
On the other hand, frequency domain learning (FDL) is introduced for HSI reconstruction to narrow the frequency domain discrepancy.
arXiv Detail & Related papers (2022-03-04T06:37:45Z) - A Latent Encoder Coupled Generative Adversarial Network (LE-GAN) for
Efficient Hyperspectral Image Super-resolution [3.1023808510465627]
generative adversarial network (GAN) has proven to be an effective deep learning framework for image super-resolution.
To alleviate the problem of mode collapse, this work has proposed a novel GAN model coupled with a latent encoder (LE-GAN)
LE-GAN can map the generated spectral-spatial features from the image space to the latent space and produce a coupling component to regularise the generated samples.
arXiv Detail & Related papers (2021-11-16T18:40:19Z) - Hyperspectral Pansharpening Based on Improved Deep Image Prior and
Residual Reconstruction [64.10636296274168]
Hyperspectral pansharpening aims to synthesize a low-resolution hyperspectral image (LR-HSI) with a registered panchromatic image (PAN) to generate an enhanced HSI with high spectral and spatial resolution.
Recently proposed HS pansharpening methods have obtained remarkable results using deep convolutional networks (ConvNets)
We propose a novel over-complete network, called HyperKite, which focuses on learning high-level features by constraining the receptive from increasing in the deep layers.
arXiv Detail & Related papers (2021-07-06T14:11:03Z) - Unsupervised Alternating Optimization for Blind Hyperspectral Imagery
Super-resolution [40.350308926790255]
This paper proposes an unsupervised blind HSI SR method to handle blind HSI fusion problem.
We first propose an alternating optimization based deep framework to estimate the degeneration models and reconstruct the latent image.
Then, a meta-learning based mechanism is further proposed to pre-train the network, which can effectively improve the speed and generalization ability.
arXiv Detail & Related papers (2020-12-03T07:52:32Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
We propose a novel coupled unmixing network with a cross-attention mechanism, CUCaNet, to enhance the spatial resolution of HSI.
Experiments are conducted on three widely-used HS-MS datasets in comparison with state-of-the-art HSI-SR models.
arXiv Detail & Related papers (2020-07-10T08:08:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.