PersonaFlow: Boosting Research Ideation with LLM-Simulated Expert Personas
- URL: http://arxiv.org/abs/2409.12538v1
- Date: Thu, 19 Sep 2024 07:54:29 GMT
- Title: PersonaFlow: Boosting Research Ideation with LLM-Simulated Expert Personas
- Authors: Yiren Liu, Pranav Sharma, Mehul Jitendra Oswal, Haijun Xia, Yun Huang,
- Abstract summary: We introduce PersonaFlow, an LLM-based system using persona simulation to support research ideation.
Our findings indicate that using multiple personas during ideation significantly enhances user-perceived quality of outcomes.
Users' persona customization interactions significantly improved their sense of control and recall of generated ideas.
- Score: 12.593617990325528
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Developing novel interdisciplinary research ideas often requires discussions and feedback from experts across different domains. However, obtaining timely inputs is challenging due to the scarce availability of domain experts. Recent advances in Large Language Model (LLM) research have suggested the feasibility of utilizing LLM-simulated expert personas to support research ideation. In this study, we introduce PersonaFlow, an LLM-based system using persona simulation to support the ideation stage of interdisciplinary scientific discovery. Our findings indicate that using multiple personas during ideation significantly enhances user-perceived quality of outcomes (e.g., relevance of critiques, creativity of research questions) without increasing cognitive load. We also found that users' persona customization interactions significantly improved their sense of control and recall of generated ideas. Based on the findings, we discuss highlighting ethical concerns, including potential over-reliance and cognitive biases, and suggest design implications for leveraging LLM-simulated expert personas to support research ideation when human expertise is inaccessible.
Related papers
- Persuasion with Large Language Models: a Survey [49.86930318312291]
Large Language Models (LLMs) have created new disruptive possibilities for persuasive communication.
In areas such as politics, marketing, public health, e-commerce, and charitable giving, such LLM Systems have already achieved human-level or even super-human persuasiveness.
Our survey suggests that the current and future potential of LLM-based persuasion poses profound ethical and societal risks.
arXiv Detail & Related papers (2024-11-11T10:05:52Z) - Vital Insight: Assisting Experts' Sensemaking Process of Multi-modal Personal Tracking Data Using Visualization and LLM [25.264865296828116]
Vital Insight is an evidence-based'sensemaking' system that combines direct representation and indirect inference through visualization and Large Language Models.
We evaluate Vital Insight in user testing sessions with 14 experts in multi-modal tracking, synthesize design implications, and develop an expert sensemaking model where they iteratively move between direct data representations and AI-supported inferences to explore, retrieve, question, and validate insights.
arXiv Detail & Related papers (2024-10-18T21:56:35Z) - The LLM Effect: Are Humans Truly Using LLMs, or Are They Being Influenced By Them Instead? [60.01746782465275]
Large Language Models (LLMs) have shown capabilities close to human performance in various analytical tasks.
This paper investigates the efficiency and accuracy of LLMs in specialized tasks through a structured user study focusing on Human-LLM partnership.
arXiv Detail & Related papers (2024-10-07T02:30:18Z) - Can LLMs Generate Novel Research Ideas? A Large-Scale Human Study with 100+ NLP Researchers [90.26363107905344]
Large language models (LLMs) have sparked optimism about their potential to accelerate scientific discovery.
No evaluations have shown that LLM systems can take the very first step of producing novel, expert-level ideas.
arXiv Detail & Related papers (2024-09-06T08:25:03Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgent is a large language model-powered research idea writing agent.
It generates problems, methods, and experiment designs while iteratively refining them based on scientific literature.
We experimentally validate our ResearchAgent on scientific publications across multiple disciplines.
arXiv Detail & Related papers (2024-04-11T13:36:29Z) - Apprentices to Research Assistants: Advancing Research with Large Language Models [0.0]
Large Language Models (LLMs) have emerged as powerful tools in various research domains.
This article examines their potential through a literature review and firsthand experimentation.
arXiv Detail & Related papers (2024-04-09T15:53:06Z) - Reading Users' Minds from What They Say: An Investigation into LLM-based Empathic Mental Inference [6.208698652041961]
In human-centered design, developing a comprehensive and in-depth understanding of user experiences is paramount.
accurately comprehending the real underlying mental states of a large human population remains a significant challenge today.
This paper investigates the use of Large Language Models (LLMs) for performing mental inference tasks.
arXiv Detail & Related papers (2024-03-20T04:57:32Z) - Exploring the Cognitive Knowledge Structure of Large Language Models: An
Educational Diagnostic Assessment Approach [50.125704610228254]
Large Language Models (LLMs) have not only exhibited exceptional performance across various tasks, but also demonstrated sparks of intelligence.
Recent studies have focused on assessing their capabilities on human exams and revealed their impressive competence in different domains.
We conduct an evaluation using MoocRadar, a meticulously annotated human test dataset based on Bloom taxonomy.
arXiv Detail & Related papers (2023-10-12T09:55:45Z) - ChatEval: Towards Better LLM-based Evaluators through Multi-Agent Debate [57.71597869337909]
We build a multi-agent referee team called ChatEval to autonomously discuss and evaluate the quality of generated responses from different models.
Our analysis shows that ChatEval transcends mere textual scoring, offering a human-mimicking evaluation process for reliable assessments.
arXiv Detail & Related papers (2023-08-14T15:13:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.