Hybrid Ensemble Deep Graph Temporal Clustering for Spatiotemporal Data
- URL: http://arxiv.org/abs/2409.12590v1
- Date: Thu, 19 Sep 2024 09:14:10 GMT
- Title: Hybrid Ensemble Deep Graph Temporal Clustering for Spatiotemporal Data
- Authors: Francis Ndikum Nji, Omar Faruque, Mostafa Cham, Janeja Vandana, Jianwu Wang,
- Abstract summary: We propose a hybrid ensemble graph clustering (HEDGTC) method for multivariate temporal data analysis.
HEDGTC adopts a dual consensus approach to address noise and misclassification from traditional clustering.
When evaluated on three real-world datasets, HEDGTC outperforms state-of-the-art ensemble clustering models.
- Score: 0.37083047471478225
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Classifying subsets based on spatial and temporal features is crucial to the analysis of spatiotemporal data given the inherent spatial and temporal variability. Since no single clustering algorithm ensures optimal results, researchers have increasingly explored the effectiveness of ensemble approaches. Ensemble clustering has attracted much attention due to increased diversity, better generalization, and overall improved clustering performance. While ensemble clustering may yield promising results on simple datasets, it has not been fully explored on complex multivariate spatiotemporal data. For our contribution to this field, we propose a novel hybrid ensemble deep graph temporal clustering (HEDGTC) method for multivariate spatiotemporal data. HEDGTC integrates homogeneous and heterogeneous ensemble methods and adopts a dual consensus approach to address noise and misclassification from traditional clustering. It further applies a graph attention autoencoder network to improve clustering performance and stability. When evaluated on three real-world multivariate spatiotemporal data, HEDGTC outperforms state-of-the-art ensemble clustering models by showing improved performance and stability with consistent results. This indicates that HEDGTC can effectively capture implicit temporal patterns in complex spatiotemporal data.
Related papers
- DECRL: A Deep Evolutionary Clustering Jointed Temporal Knowledge Graph Representation Learning Approach [9.158462794964835]
Temporal Knowledge Graph (TKG) representation learning aims to map temporal evolving entities and relations to embedded representations in a continuous low-dimensional vector space.
We propose a Deep Evolutionary Clustering jointed temporal knowledge graph Representation Learning approach (DECRL)
DECRL achieves the state-of-the-art performances, outperforming the best baseline by an average of 9.53%, 12.98%, 10.42%, and 14.68% in MRR, Hits@1, Hits@3, and Hits@10, respectively.
arXiv Detail & Related papers (2024-10-30T01:36:06Z) - MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
We propose a Multi-Grained Correlations-based Prediction Network.
It simultaneously considers correlations at three levels to enhance prediction performance.
It employs adversarial training with an attention mechanism-based predictor and conditional discriminator to optimize prediction results at coarse-grained level.
arXiv Detail & Related papers (2024-05-30T03:32:44Z) - Contrastive Multi-view Subspace Clustering of Hyperspectral Images based
on Graph Convolutional Networks [14.978666092012856]
Subspace clustering is an effective approach for clustering hyperspectral images.
In this study, contrastive multi-view subspace clustering of HSI was proposed based on graph convolutional networks.
The proposed model effectively improves the clustering accuracy of HSI.
arXiv Detail & Related papers (2023-12-11T02:22:10Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
Key insights can be obtained by discovering lead-lag relationships inherent in the data.
We develop a clustering-driven methodology for robust detection of lead-lag relationships in lagged multi-factor models.
arXiv Detail & Related papers (2023-05-11T10:30:35Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
We formulate a novel clustering model, which exploits the non-negative feature property and incorporates the multi-view information into a unified joint learning framework.
We also explore, for the first time, the multi-model non-negative graph-based approach to clustering data based on deep features.
arXiv Detail & Related papers (2022-11-03T08:18:27Z) - Adaptively-weighted Integral Space for Fast Multiview Clustering [54.177846260063966]
We propose an Adaptively-weighted Integral Space for Fast Multiview Clustering (AIMC) with nearly linear complexity.
Specifically, view generation models are designed to reconstruct the view observations from the latent integral space.
Experiments conducted on several realworld datasets confirm the superiority of the proposed AIMC method.
arXiv Detail & Related papers (2022-08-25T05:47:39Z) - Fast and Interpretable Consensus Clustering via Minipatch Learning [0.0]
We develop IMPACC: Interpretable MiniPatch Adaptive Consensus Clustering.
We develop adaptive sampling schemes for observations, which result in both improved reliability and computational savings.
Results show that our approach yields more accurate and interpretable cluster solutions.
arXiv Detail & Related papers (2021-10-05T22:39:28Z) - Spatial-Spectral Clustering with Anchor Graph for Hyperspectral Image [88.60285937702304]
This paper proposes a novel unsupervised approach called spatial-spectral clustering with anchor graph (SSCAG) for HSI data clustering.
The proposed SSCAG is competitive against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-24T08:09:27Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
This paper proposes a new multi-view clustering method, low-rank subspace multi-view clustering based on adaptive graph regularization.
Experimental results for five widely used multi-view benchmarks show that our proposed algorithm surpasses other state-of-the-art methods by a clear margin.
arXiv Detail & Related papers (2020-08-23T08:25:06Z) - Minority Oversampling for Imbalanced Time Series Classification [7.695093197007146]
This paper proposes a structure preserving Oversampling method to combat the High-dimensional Imbalanced Time-series classification.
Experimental results on several publicly available time-series datasets demonstrate the superiority of OHIT against the state-of-the-art oversampling algorithms.
arXiv Detail & Related papers (2020-04-14T09:20:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.