DECRL: A Deep Evolutionary Clustering Jointed Temporal Knowledge Graph Representation Learning Approach
- URL: http://arxiv.org/abs/2410.22631v1
- Date: Wed, 30 Oct 2024 01:36:06 GMT
- Title: DECRL: A Deep Evolutionary Clustering Jointed Temporal Knowledge Graph Representation Learning Approach
- Authors: Qian Chen, Ling Chen,
- Abstract summary: Temporal Knowledge Graph (TKG) representation learning aims to map temporal evolving entities and relations to embedded representations in a continuous low-dimensional vector space.
We propose a Deep Evolutionary Clustering jointed temporal knowledge graph Representation Learning approach (DECRL)
DECRL achieves the state-of-the-art performances, outperforming the best baseline by an average of 9.53%, 12.98%, 10.42%, and 14.68% in MRR, Hits@1, Hits@3, and Hits@10, respectively.
- Score: 9.158462794964835
- License:
- Abstract: Temporal Knowledge Graph (TKG) representation learning aims to map temporal evolving entities and relations to embedded representations in a continuous low-dimensional vector space. However, existing approaches cannot capture the temporal evolution of high-order correlations in TKGs. To this end, we propose a Deep Evolutionary Clustering jointed temporal knowledge graph Representation Learning approach (DECRL). Specifically, a deep evolutionary clustering module is proposed to capture the temporal evolution of high-order correlations among entities. Furthermore, a cluster-aware unsupervised alignment mechanism is introduced to ensure the precise one-to-one alignment of soft overlapping clusters across timestamps, thereby maintaining the temporal smoothness of clusters. In addition, an implicit correlation encoder is introduced to capture latent correlations between any pair of clusters under the guidance of a global graph. Extensive experiments on seven real-world datasets demonstrate that DECRL achieves the state-of-the-art performances, outperforming the best baseline by an average of 9.53%, 12.98%, 10.42%, and 14.68% in MRR, Hits@1, Hits@3, and Hits@10, respectively.
Related papers
- Hybrid Ensemble Deep Graph Temporal Clustering for Spatiotemporal Data [0.37083047471478225]
We propose a hybrid ensemble graph clustering (HEDGTC) method for multivariate temporal data analysis.
HEDGTC adopts a dual consensus approach to address noise and misclassification from traditional clustering.
When evaluated on three real-world datasets, HEDGTC outperforms state-of-the-art ensemble clustering models.
arXiv Detail & Related papers (2024-09-19T09:14:10Z) - Self-Supervised Contrastive Graph Clustering Network via Structural Information Fusion [15.293684479404092]
We propose a novel deep graph clustering method called CGCN.
Our approach introduces contrastive signals and deep structural information into the pre-training process.
Our method has been experimentally validated on multiple real-world graph datasets.
arXiv Detail & Related papers (2024-08-08T09:49:26Z) - Clustering Time-Evolving Networks Using the Spatio-Temporal Graph Laplacian [0.8643517734716606]
We generalize existing spectral algorithms to identify and analyze communities in time-varying graph structures.
We show that thetemporal-directed graph Laplacian allows for a clear interpretation of cluster structure evolution over time for directed and undirected clusters.
arXiv Detail & Related papers (2024-07-12T14:31:54Z) - CTRL: Continuous-Time Representation Learning on Temporal Heterogeneous Information Network [32.42051167404171]
We propose a Continuous-Time Representation Learning model on temporal HINs.
We train the model with a future event (a subgraph) prediction task to capture the evolution of the high-order network structure.
The results demonstrate that our model significantly boosts performance and outperforms various state-of-the-art approaches.
arXiv Detail & Related papers (2024-05-11T03:39:22Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
Graph Convolutional Network (GCN) has exhibited remarkable potential in improving graph-based clustering.
Models estimate an initial graph beforehand to apply GCN.
Deep Contrastive Graph Learning (DCGL) model is proposed for general data clustering.
arXiv Detail & Related papers (2024-02-25T07:03:37Z) - Deep Temporal Graph Clustering [77.02070768950145]
We propose a general framework for deep Temporal Graph Clustering (GC)
GC introduces deep clustering techniques to suit the interaction sequence-based batch-processing pattern of temporal graphs.
Our framework can effectively improve the performance of existing temporal graph learning methods.
arXiv Detail & Related papers (2023-05-18T06:17:50Z) - Self-Supervised Temporal Graph learning with Temporal and Structural Intensity Alignment [53.72873672076391]
Temporal graph learning aims to generate high-quality representations for graph-based tasks with dynamic information.
We propose a self-supervised method called S2T for temporal graph learning, which extracts both temporal and structural information.
S2T achieves at most 10.13% performance improvement compared with the state-of-the-art competitors on several datasets.
arXiv Detail & Related papers (2023-02-15T06:36:04Z) - Graph Representation Learning via Contrasting Cluster Assignments [57.87743170674533]
We propose a novel unsupervised graph representation model by contrasting cluster assignments, called as GRCCA.
It is motivated to make good use of local and global information synthetically through combining clustering algorithms and contrastive learning.
GRCCA has strong competitiveness in most tasks.
arXiv Detail & Related papers (2021-12-15T07:28:58Z) - Spatial-Spectral Clustering with Anchor Graph for Hyperspectral Image [88.60285937702304]
This paper proposes a novel unsupervised approach called spatial-spectral clustering with anchor graph (SSCAG) for HSI data clustering.
The proposed SSCAG is competitive against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-24T08:09:27Z) - Temporal Contrastive Graph Learning for Video Action Recognition and
Retrieval [83.56444443849679]
This work takes advantage of the temporal dependencies within videos and proposes a novel self-supervised method named Temporal Contrastive Graph Learning (TCGL)
Our TCGL roots in a hybrid graph contrastive learning strategy to jointly regard the inter-snippet and intra-snippet temporal dependencies as self-supervision signals for temporal representation learning.
Experimental results demonstrate the superiority of our TCGL over the state-of-the-art methods on large-scale action recognition and video retrieval benchmarks.
arXiv Detail & Related papers (2021-01-04T08:11:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.