論文の概要: Accurate Automatic 3D Annotation of Traffic Lights and Signs for Autonomous Driving
- arxiv url: http://arxiv.org/abs/2409.12620v2
- Date: Mon, 23 Sep 2024 09:54:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 14:08:12.873658
- Title: Accurate Automatic 3D Annotation of Traffic Lights and Signs for Autonomous Driving
- Title(参考訳): 自動走行のための交通信号と標識の正確な3次元アノテーション
- Authors: Sándor Kunsági-Máté, Levente Pető, Lehel Seres, Tamás Matuszka,
- Abstract要約: 交通信号や道路標識などの交通管理対象の3D検出は、自動運転車にとって不可欠である。
本稿では,信号機や標識の3次元バウンディングボックスアノテーションを自動生成する手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: 3D detection of traffic management objects, such as traffic lights and road signs, is vital for self-driving cars, particularly for address-to-address navigation where vehicles encounter numerous intersections with these static objects. This paper introduces a novel method for automatically generating accurate and temporally consistent 3D bounding box annotations for traffic lights and signs, effective up to a range of 200 meters. These annotations are suitable for training real-time models used in self-driving cars, which need a large amount of training data. The proposed method relies only on RGB images with 2D bounding boxes of traffic management objects, which can be automatically obtained using an off-the-shelf image-space detector neural network, along with GNSS/INS data, eliminating the need for LiDAR point cloud data.
- Abstract(参考訳): 交通信号や道路標識などの交通管理対象の3D検出は、自動運転車、特に車両が静的な物体と多くの交差点に遭遇するアドレスとアドレスのナビゲーションに不可欠である。
本稿では,信号機や標識に対して,正確な時間的整合性を持つ3次元境界ボックスアノテーションを自動生成する手法を提案する。
これらのアノテーションは、大量のトレーニングデータを必要とする自動運転車で使用されるリアルタイムモデルをトレーニングするのに適しています。
提案手法は,GNSS/INSデータとともに市販の画像空間検出ニューラルネットワークを用いて自動的に取得可能な,トラフィック管理対象の2次元境界ボックスを持つRGB画像のみに依存し,LiDAR点クラウドデータの必要性を解消する。
関連論文リスト
- Railway LiDAR semantic segmentation based on intelligent semi-automated data annotation [0.48212500317840945]
本稿では,スキャンと画像の併用による2DPassネットワークアーキテクチャに基づくポイントワイズ3次元セマンティックセマンティックセマンティックセマンティクスのアプローチを提案する。
また,ドイツの鉄道線路に記録された必要なデータセットを効率よく正確にラベル付けするために,半自動のインテリジェントデータアノテーション手法を提案する。
我々は、鉄道環境からのカメラやLiDARデータを含むレールデータを注釈し、画像セグメンテーションネットワークを用いて生のLiDAR点雲を転送し、アクティブラーニングを効率的に活用する最先端の3DLiDARセグメンテーションネットワークを訓練する。
論文 参考訳(メタデータ) (2024-10-17T09:36:19Z) - Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
本稿では,道路環境のコヒーレントな地図を作成するために,車両群から収集した局所部分写像を中心インスタンスに融合するマッピングシステムを提案する。
本手法は,シーン特異的なニューラルサイン距離場を用いて,雑音と不完全局所部分写像を併用する。
我々は,記憶効率の高いスパース機能グリッドを活用して大規模にスケールし,シーン再構築における不確実性をモデル化するための信頼スコアを導入する。
論文 参考訳(メタデータ) (2024-10-10T10:10:03Z) - 3D Object Detection and High-Resolution Traffic Parameters Extraction
Using Low-Resolution LiDAR Data [14.142956899468922]
本研究では,複数のLiDARシステムの必要性を緩和し,無駄な3Dアノテーションプロセスを簡単にする,革新的なフレームワークを提案する。
2次元境界箱検出と抽出された高さ情報を用いて,人間の介入なしに3次元境界箱を自動的に生成することができる。
論文 参考訳(メタデータ) (2024-01-13T01:22:20Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Patterns of Vehicle Lights: Addressing Complexities in Curation and
Annotation of Camera-Based Vehicle Light Datasets and Metrics [0.0]
本稿では、コンピュータビジョンにおける車両光の表現とその自律運転分野における様々なタスクへの応用について考察する。
車両の光検出から恩恵を受けることができる自動運転における3つの重要なタスクが特定される。
データ駆動モデルのトレーニングのための大規模なデータセットの収集と注釈付けの課題にも対処する。
論文 参考訳(メタデータ) (2023-07-26T21:48:14Z) - Real-Time And Robust 3D Object Detection with Roadside LiDARs [20.10416681832639]
道路沿いのLiDARにおける交通参加者をリアルタイムに検出できる3次元物体検出モデルを設計する。
我々のモデルは既存の3D検出器をベースラインとして使用し、精度を向上させる。
スマートシティのアプリケーションに使用できるLiDARベースの3D検出器に多大な貢献をしています。
論文 参考訳(メタデータ) (2022-07-11T21:33:42Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
我々は、エネルギー効率と高速モデルトレーニングのための交通信号認識に強力なスパイクニューラルネットワーク(SNN)を導入している。
数値的な結果から,提案するフェデレーションSNNは,従来のフェデレーション畳み込みニューラルネットワークよりも精度,ノイズ免疫性,エネルギー効率に優れていたことが示唆された。
論文 参考訳(メタデータ) (2022-05-28T03:11:48Z) - Traffic-Net: 3D Traffic Monitoring Using a Single Camera [1.1602089225841632]
我々は,1台のCCTVトラヒックカメラを用いたリアルタイムトラヒック監視のための実用的なプラットフォームを提供する。
車両・歩行者検出のためのカスタムYOLOv5ディープニューラルネットワークモデルとSORT追跡アルゴリズムの改良を行った。
また、短時間・長期の時間的ビデオデータストリームに基づく階層的なトラフィックモデリングソリューションも開発している。
論文 参考訳(メタデータ) (2021-09-19T16:59:01Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
3D MOT問題に対する統一型学習型アプローチを提案します。
我々は、完全にトレーニング可能なデータアソシエーションにNeural Message Passing Networkを使用します。
AMOTAの65.6%の最先端性能と58%のIDスウィッチを達成して、公開可能なnuScenesデータセットに対する提案手法のメリットを示す。
論文 参考訳(メタデータ) (2021-04-23T17:59:28Z) - Exploiting Playbacks in Unsupervised Domain Adaptation for 3D Object
Detection [55.12894776039135]
ディープラーニングに基づく最先端の3Dオブジェクト検出器は、有望な精度を示しているが、ドメインの慣用性に過度に適合する傾向がある。
対象領域の擬似ラベルの検出器を微調整することで,このギャップを大幅に削減する新たな学習手法を提案する。
5つの自律運転データセットにおいて、これらの擬似ラベル上の検出器を微調整することで、新しい運転環境への領域ギャップを大幅に減らすことを示す。
論文 参考訳(メタデータ) (2021-03-26T01:18:11Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
実画像中の車両に動的部品を付加した3次元自動車モデルによる効果的なトレーニングデータ生成プロセスを提案する。
私達のアプローチは人間の相互作用なしで完全に自動です。
VUS解析用マルチタスクネットワークとVHI解析用マルチストリームネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-15T03:03:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。