Machine-learning-based multipoint optimization of fluidic injection parameters for improving nozzle performance
- URL: http://arxiv.org/abs/2409.12707v1
- Date: Thu, 19 Sep 2024 12:32:54 GMT
- Title: Machine-learning-based multipoint optimization of fluidic injection parameters for improving nozzle performance
- Authors: Yunjia Yang, Jiazhe Li, Yufei Zhang, Haixin Chen,
- Abstract summary: This paper uses a pretrained neural network model to replace computational fluid dynamic (CFD) simulations.
Considering the physical characteristics of the nozzle flow field, a prior-based prediction strategy is adopted to enhance the model's transferability.
An improvement in the thrust coefficient of 1.14% is achieved, and the time cost is greatly reduced compared with the traditional optimization methods.
- Score: 2.5864426808687893
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fluidic injection provides a promising solution to improve the performance of overexpanded single expansion ramp nozzle (SERN) during vehicle acceleration. However, determining the injection parameters for the best overall performance under multiple nozzle operating conditions is still a challenge. The gradient-based optimization method requires gradients of injection parameters at each design point, leading to high computational costs if traditional computational fluid dynamic (CFD) simulations are adopted. This paper uses a pretrained neural network model to replace CFD during optimization to quickly calculate the nozzle flow field at multiple design points. Considering the physical characteristics of the nozzle flow field, a prior-based prediction strategy is adopted to enhance the model's transferability. In addition, the back-propagation algorithm of the neural network is adopted to quickly evaluate the gradients by calling the computation process only once, thereby greatly reducing the gradient computation time compared to the finite differential method. As a test case, the average nozzle thrust coefficient of a SERN at seven design points is optimized. An improvement in the thrust coefficient of 1.14% is achieved, and the time cost is greatly reduced compared with the traditional optimization methods, even when the time to establish the database for training is considered.
Related papers
- Diffusion Generative Inverse Design [28.04683283070957]
Inverse design refers to the problem of optimizing the input of an objective function in order to enact a target outcome.
Recent developments in learned graph neural networks (GNNs) can be used for accurate, efficient, differentiable estimation of simulator dynamics.
We show how denoising diffusion diffusion models can be used to solve inverse design problems efficiently and propose a particle sampling algorithm for further improving their efficiency.
arXiv Detail & Related papers (2023-09-05T08:32:07Z) - Deep neural operators can serve as accurate surrogates for shape
optimization: A case study for airfoils [3.2996060586026354]
We investigate the use of DeepONets to infer flow fields around unseen airfoils with the aim of shape optimization.
We present results which display little to no degradation in prediction accuracy, while reducing the online optimization cost by orders of magnitude.
arXiv Detail & Related papers (2023-02-02T00:19:09Z) - Towards Theoretically Inspired Neural Initialization Optimization [66.04735385415427]
We propose a differentiable quantity, named GradCosine, with theoretical insights to evaluate the initial state of a neural network.
We show that both the training and test performance of a network can be improved by maximizing GradCosine under norm constraint.
Generalized from the sample-wise analysis into the real batch setting, NIO is able to automatically look for a better initialization with negligible cost.
arXiv Detail & Related papers (2022-10-12T06:49:16Z) - Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep
Models [158.19276683455254]
Adaptive gradient algorithms borrow the moving average idea of heavy ball acceleration to estimate accurate first second-order moments of gradient for accelerating convergence.
Nesterov acceleration converges faster than ball acceleration in theory and also in many empirical cases.
In this paper we develop a new Nesterov momentum estimation (NME) method, which avoids the extra computation and memory overhead of computing gradient at the point.
We show that Adan surpasses the corresponding SoTAs on both vision transformers (ViTs and CNNs) and sets new SoTAs for many popular networks.
arXiv Detail & Related papers (2022-08-13T16:04:39Z) - Data-driven evolutionary algorithm for oil reservoir well-placement and
control optimization [3.012067935276772]
Generalized data-driven evolutionary algorithm (GDDE) is proposed to reduce the number of simulation runs on well-placement and control optimization problems.
Probabilistic neural network (PNN) is adopted as the classifier to select informative and promising candidates.
arXiv Detail & Related papers (2022-06-07T09:07:49Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
deep equilibrium model is a class of models that foregoes traditional network depth and instead computes the output of a network by finding the fixed point of a single nonlinear layer.
We show that there is a natural synergy between these two settings.
We demonstrate this strategy on various tasks such as training generative models while optimizing over latent codes, training models for inverse problems like denoising and inpainting, adversarial training and gradient based meta-learning.
arXiv Detail & Related papers (2021-11-25T19:59:33Z) - Differentiable Agent-Based Simulation for Gradient-Guided
Simulation-Based Optimization [0.0]
gradient estimation methods can be used to steer the optimization towards a local optimum.
In traffic signal timing optimization problems with high input dimension, the gradient-based methods exhibit substantially superior performance.
arXiv Detail & Related papers (2021-03-23T11:58:21Z) - An AI-Assisted Design Method for Topology Optimization Without
Pre-Optimized Training Data [68.8204255655161]
An AI-assisted design method based on topology optimization is presented, which is able to obtain optimized designs in a direct way.
Designs are provided by an artificial neural network, the predictor, on the basis of boundary conditions and degree of filling as input data.
arXiv Detail & Related papers (2020-12-11T14:33:27Z) - Enhanced data efficiency using deep neural networks and Gaussian
processes for aerodynamic design optimization [0.0]
Adjoint-based optimization methods are attractive for aerodynamic shape design.
They can become prohibitively expensive when multiple optimization problems are being solved.
We propose a machine learning enabled, surrogate-based framework that replaces the expensive adjoint solver.
arXiv Detail & Related papers (2020-08-15T15:09:21Z) - A Primer on Zeroth-Order Optimization in Signal Processing and Machine
Learning [95.85269649177336]
ZO optimization iteratively performs three major steps: gradient estimation, descent direction, and solution update.
We demonstrate promising applications of ZO optimization, such as evaluating and generating explanations from black-box deep learning models, and efficient online sensor management.
arXiv Detail & Related papers (2020-06-11T06:50:35Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.