Spectral-GS: Taming 3D Gaussian Splatting with Spectral Entropy
- URL: http://arxiv.org/abs/2409.12771v2
- Date: Tue, 15 Oct 2024 07:35:49 GMT
- Title: Spectral-GS: Taming 3D Gaussian Splatting with Spectral Entropy
- Authors: Letian Huang, Jie Guo, Jialin Dan, Ruoyu Fu, Shujie Wang, Yuanqi Li, Yanwen Guo,
- Abstract summary: 3D-GS lacks shape awareness, relying instead on spectral radius and view positional gradients to determine splitting.
Our Spectral-GS, based on spectral analysis, introduces 3D shape-aware splitting and 2D view-consistent filtering strategies.
- Score: 14.320240635262756
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, 3D Gaussian Splatting (3D-GS) has achieved impressive results in novel view synthesis, demonstrating high fidelity and efficiency. However, it easily exhibits needle-like artifacts, especially when increasing the sampling rate. Mip-Splatting tries to remove these artifacts with a 3D smoothing filter for frequency constraints and a 2D Mip filter for approximated supersampling. Unfortunately, it tends to produce over-blurred results, and sometimes needle-like Gaussians still persist. Our spectral analysis of the covariance matrix during optimization and densification reveals that current 3D-GS lacks shape awareness, relying instead on spectral radius and view positional gradients to determine splitting. As a result, needle-like Gaussians with small positional gradients and low spectral entropy fail to split and overfit high-frequency details. Furthermore, both the filters used in 3D-GS and Mip-Splatting reduce the spectral entropy and increase the condition number during zooming in to synthesize novel view, causing view inconsistencies and more pronounced artifacts. Our Spectral-GS, based on spectral analysis, introduces 3D shape-aware splitting and 2D view-consistent filtering strategies, effectively addressing these issues, enhancing 3D-GS's capability to represent high-frequency details without noticeable artifacts, and achieving high-quality photorealistic rendering.
Related papers
- Optimizing 3D Gaussian Splatting for Sparse Viewpoint Scene Reconstruction [11.840097269724792]
3D Gaussian Splatting (3DGS) has emerged as a promising approach for 3D scene representation, offering a reduction in computational overhead compared to Neural Radiance Fields (NeRF)
We introduce SVS-GS, a novel framework for Sparse Viewpoint Scene reconstruction that integrates a 3D Gaussian smoothing filter to suppress artifacts.
arXiv Detail & Related papers (2024-09-05T03:18:04Z) - SpecGaussian with Latent Features: A High-quality Modeling of the View-dependent Appearance for 3D Gaussian Splatting [11.978842116007563]
Lantent-SpecGS is an approach that utilizes a universal latent neural descriptor within each 3D Gaussian.
Two parallel CNNs are designed to decoder the splatting feature maps into diffuse color and specular color separately.
A mask that depends on the viewpoint is learned to merge these two colors, resulting in the final rendered image.
arXiv Detail & Related papers (2024-08-23T15:25:08Z) - 3iGS: Factorised Tensorial Illumination for 3D Gaussian Splatting [15.059156311856087]
3D Gaussian Splatting, or 3iGS, improves upon 3D Gaussian Splatting (3DGS) rendering quality.
Use of 3D Gaussians as representation of radiance fields has enabled high quality novel view synthesis at real-time rendering speed.
arXiv Detail & Related papers (2024-08-07T13:06:29Z) - LP-3DGS: Learning to Prune 3D Gaussian Splatting [71.97762528812187]
We propose learning-to-prune 3DGS, where a trainable binary mask is applied to the importance score that can find optimal pruning ratio automatically.
Experiments have shown that LP-3DGS consistently produces a good balance that is both efficient and high quality.
arXiv Detail & Related papers (2024-05-29T05:58:34Z) - 2D Gaussian Splatting for Geometrically Accurate Radiance Fields [50.056790168812114]
3D Gaussian Splatting (3DGS) has recently revolutionized radiance field reconstruction, achieving high quality novel view synthesis and fast rendering speed without baking.
We present 2D Gaussian Splatting (2DGS), a novel approach to model and reconstruct geometrically accurate radiance fields from multi-view images.
We demonstrate that our differentiable terms allows for noise-free and detailed geometry reconstruction while maintaining competitive appearance quality, fast training speed, and real-time rendering.
arXiv Detail & Related papers (2024-03-26T17:21:24Z) - FreGS: 3D Gaussian Splatting with Progressive Frequency Regularization [67.47895278233717]
We develop a progressive frequency regularization technique to tackle the over-reconstruction issue within the frequency space.
FreGS achieves superior novel view synthesis and outperforms the state-of-the-art consistently.
arXiv Detail & Related papers (2024-03-11T17:00:27Z) - Spec-Gaussian: Anisotropic View-Dependent Appearance for 3D Gaussian Splatting [55.71424195454963]
Spec-Gaussian is an approach that utilizes an anisotropic spherical Gaussian appearance field instead of spherical harmonics.
Our experimental results demonstrate that our method surpasses existing approaches in terms of rendering quality.
This improvement extends the applicability of 3D GS to handle intricate scenarios with specular and anisotropic surfaces.
arXiv Detail & Related papers (2024-02-24T17:22:15Z) - GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering [112.16239342037714]
GES (Generalized Exponential Splatting) is a novel representation that employs Generalized Exponential Function (GEF) to model 3D scenes.
With the aid of a frequency-modulated loss, GES achieves competitive performance in novel-view synthesis benchmarks.
arXiv Detail & Related papers (2024-02-15T17:32:50Z) - Mip-Splatting: Alias-free 3D Gaussian Splatting [52.366815964832426]
3D Gaussian Splatting has demonstrated impressive novel view synthesis results, reaching high fidelity and efficiency.
Strong artifacts can be observed when changing the sampling rate, eg, by changing focal length or camera distance.
We find that the source for this phenomenon can be attributed to the lack of 3D frequency constraints and the usage of a 2D dilation filter.
arXiv Detail & Related papers (2023-11-27T13:03:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.