論文の概要: TEAM PILOT -- Learned Feasible Extendable Set of Dynamic MRI Acquisition Trajectories
- arxiv url: http://arxiv.org/abs/2409.12777v1
- Date: Thu, 19 Sep 2024 13:45:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 13:34:43.211688
- Title: TEAM PILOT -- Learned Feasible Extendable Set of Dynamic MRI Acquisition Trajectories
- Title(参考訳): TEAM PILOT -- 動的MRI取得軌跡の学習可能な拡張可能なセット
- Authors: Tamir Shor, Chaim Baskin, Alex Bronstein,
- Abstract要約: 本稿では,3次元ウィンドウアテンションとフレキシブルで時間的に拡張可能な獲得軌跡を用いた新しい深部圧縮型センシング手法を提案する。
本手法は既存の手法と比較してトレーニング時間と推論時間を著しく短縮する。
実データによるテストは、我々のアプローチが現在の最先端技術よりも優れていることを示している。
- 参考スコア(独自算出の注目度): 2.7719338074999547
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic Magnetic Resonance Imaging (MRI) is a crucial non-invasive method used to capture the movement of internal organs and tissues, making it a key tool for medical diagnosis. However, dynamic MRI faces a major challenge: long acquisition times needed to achieve high spatial and temporal resolution. This leads to higher costs, patient discomfort, motion artifacts, and lower image quality. Compressed Sensing (CS) addresses this problem by acquiring a reduced amount of MR data in the Fourier domain, based on a chosen sampling pattern, and reconstructing the full image from this partial data. While various deep learning methods have been developed to optimize these sampling patterns and improve reconstruction, they often struggle with slow optimization and inference times or are limited to specific temporal dimensions used during training. In this work, we introduce a novel deep-compressed sensing approach that uses 3D window attention and flexible, temporally extendable acquisition trajectories. Our method significantly reduces both training and inference times compared to existing approaches, while also adapting to different temporal dimensions during inference without requiring additional training. Tests with real data show that our approach outperforms current state-of-theart techniques. The code for reproducing all experiments will be made available upon acceptance of the paper.
- Abstract(参考訳): ダイナミック磁気共鳴イメージング(Dynamic Magnetic Resonance Imaging, MRI)は、内臓や組織の動きを捉えるための非侵襲的手法であり、医学的診断の鍵となるツールである。
しかし、ダイナミックMRIは、空間的および時間的解像度を達成するのに必要な長い取得時間という大きな課題に直面している。
これにより、コスト、患者の不快感、モーションアーティファクト、画像品質が向上する。
圧縮センシング(CS)は、選択したサンプリングパターンに基づいてフーリエ領域のMRデータを減らし、この部分データから全体像を再構成することでこの問題に対処する。
これらのサンプリングパターンを最適化し、再構築を改善するために様々なディープラーニング手法が開発されているが、しばしば遅い最適化と推論時間に苦しむか、訓練中に使用される特定の時間次元に制限される。
本研究では,3次元ウィンドウアテンションとフレキシブルで時間的に拡張可能な取得トラジェクトリを用いた,新しい深部圧縮型センシング手法を提案する。
提案手法は,既存の手法と比較してトレーニング時間と推論時間を著しく短縮すると同時に,追加のトレーニングを必要とせず,推論中に異なる時間次元に適応する。
実データによるテストは、我々のアプローチが現在の最先端技術よりも優れていることを示している。
すべての実験を再現するためのコードは、論文の受理時に利用可能になる。
関連論文リスト
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
ディープニューラルネットワークは、アンダーサンプル計測から高忠実度画像を再構成する大きな可能性を示している。
我々のモデルは、離散化に依存しないアーキテクチャであるニューラル演算子に基づいている。
我々の推論速度は拡散法よりも1,400倍速い。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - Deep Separable Spatiotemporal Learning for Fast Dynamic Cardiac MRI [22.7085949508143]
MRIは心臓診断において欠かせない役割を担っている。高速イメージングを可能にするため、k空間データをアンサンプすることができる。
この課題は、ディープラーニング再構築手法における広範なトレーニングデータを必要とする。
本研究では,高度に制限された学習データであっても,例外的に良好に動作可能な次元分離型学習手法を活用する,新規で効率的な手法を提案する。
論文 参考訳(メタデータ) (2024-02-24T23:56:15Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - Multi PILOT: Learned Feasible Multiple Acquisition Trajectories for
Dynamic MRI [0.7843343739054056]
本研究では,ダイナミックイメージング環境における獲得学習について考察する。
複数のフレーム単位の取得軌跡の協調最適化のためのエンドツーエンドパイプラインを設計する。
より短い取得時間で画像再構成精度を向上した。
論文 参考訳(メタデータ) (2023-03-13T14:23:39Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
本稿では,畳み込みニューラルネットワークや生成的敵ネットワークに基づく手法を含む,高速MRIのためのディープラーニングに基づくデータ駆動手法を紹介する。
MRI加速のための物理とデータ駆動モデルの結合に関する研究について詳述する。
最後に, 臨床応用について紹介し, マルチセンター・マルチスキャナー研究における高速MRI技術におけるデータ調和の重要性と説明可能なモデルについて述べる。
論文 参考訳(メタデータ) (2022-04-01T22:48:08Z) - DDoS-UNet: Incorporating temporal information using Dynamic Dual-channel
UNet for enhancing super-resolution of dynamic MRI [0.27998963147546135]
磁気共鳴イメージング(MRI)は、有害な電離放射線を使わずに、高い空間分解能と優れた軟質コントラストを提供する。
時間分解能の高いMRIでは空間分解能が制限される。
このトレードオフを緩和するために、ディープラーニングに基づく超解像アプローチが提案されている。
本研究は,空間的関係と時間的関係の両方を学習しようとする深層学習モデルを作成することで,この問題に対処する。
論文 参考訳(メタデータ) (2022-02-10T22:20:58Z) - STRESS: Super-Resolution for Dynamic Fetal MRI using Self-Supervised
Learning [2.5581619987137048]
我々は,インターリーブスライス獲得を伴う動的胎児MRIのための自己教師付き超解像フレームワークSTRESSを提案する。
提案手法は,低解像度画像と高解像度画像のペアを生成するために,元の取得データに基づいて,高解像度軸に沿ったインターリーブスライス取得をシミュレートする。
シミュレーションおよび子宮内データによる評価の結果,提案手法は他の自己教師付き超解像法よりも優れていた。
論文 参考訳(メタデータ) (2021-06-23T13:52:11Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
SISR(Single Image Super-Resolution)は、1つの低解像度入力画像から高解像度(HR)の詳細を得る技術である。
ディープラーニングは、大きなデータセットから事前知識を抽出し、低解像度の画像から優れたMRI画像を生成します。
論文 参考訳(メタデータ) (2021-02-25T14:52:23Z) - A Novel Approach for Correcting Multiple Discrete Rigid In-Plane Motions
Artefacts in MRI Scans [63.28835187934139]
本稿では,2つの入力枝を持つディープニューラルネットワークを用いた動きアーチファクトの除去手法を提案する。
提案法は患者の多動運動によって生成された人工物に応用できる。
論文 参考訳(メタデータ) (2020-06-24T15:25:11Z) - Deep Residual Dense U-Net for Resolution Enhancement in Accelerated MRI
Acquisition [19.422926534305837]
本稿では,MRIの高速化による高画質画像の再構成を目的としたディープラーニング手法を提案する。
具体的には、畳み込みニューラルネットワーク(CNN)を用いて、エイリアス画像と元の画像の違いを学習する。
ダウンサンプリングされたk空間データの特異性を考慮すると、与えられたk空間データを効果的に活用する学習における損失関数に新しい用語を導入する。
論文 参考訳(メタデータ) (2020-01-13T19:01:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。