論文の概要: Lexicon-Based Sentiment Analysis on Text Polarities with Evaluation of Classification Models
- arxiv url: http://arxiv.org/abs/2409.12840v1
- Date: Thu, 19 Sep 2024 15:31:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 13:10:09.752553
- Title: Lexicon-Based Sentiment Analysis on Text Polarities with Evaluation of Classification Models
- Title(参考訳): 分類モデルの評価によるテキストの極性に関する辞書ベース感性分析
- Authors: Muhammad Raees, Samina Fazilat,
- Abstract要約: 本研究は,レキシコン法を用いて感情分析を行い,テキストデータを用いた分類モデルの評価を行った。
語彙に基づく手法は、単語レベルでの感情と主観性の強さを識別する。
この研究は、テキストが正、負、中立とラベル付けされているというマルチクラスの問題に基づいている。
- 参考スコア(独自算出の注目度): 1.342834401139078
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Sentiment analysis possesses the potential of diverse applicability on digital platforms. Sentiment analysis extracts the polarity to understand the intensity and subjectivity in the text. This work uses a lexicon-based method to perform sentiment analysis and shows an evaluation of classification models trained over textual data. The lexicon-based methods identify the intensity of emotion and subjectivity at word levels. The categorization identifies the informative words inside a text and specifies the quantitative ranking of the polarity of words. This work is based on a multi-class problem of text being labeled as positive, negative, or neutral. Twitter sentiment dataset containing 1.6 million unprocessed tweets is used with lexicon-based methods like Text Blob and Vader Sentiment to introduce the neutrality measure on text. The analysis of lexicons shows how the word count and the intensity classify the text. A comparative analysis of machine learning models, Naiive Bayes, Support Vector Machines, Multinomial Logistic Regression, Random Forest, and Extreme Gradient (XG) Boost performed across multiple performance metrics. The best estimations are achieved through Random Forest with an accuracy score of 81%. Additionally, sentiment analysis is applied for a personality judgment case against a Twitter profile based on online activity.
- Abstract(参考訳): 感性分析は、デジタルプラットフォームにおける多様な適用可能性を持っている。
感性分析はテキストの強度と主観性を理解するために極性を抽出する。
本研究は,レキシコン法を用いて感情分析を行い,テキストデータを用いた分類モデルの評価を行った。
語彙に基づく手法は、単語レベルでの感情と主観性の強さを識別する。
分類は、テキスト内の情報的単語を特定し、単語の極性の定量的ランキングを指定する。
この研究は、テキストが正、負、中立とラベル付けされているというマルチクラスの問題に基づいている。
660万の未処理ツイートを含むTwitterの感情データセットは、テキストブロブやVader Sentimentのようなレキシコンベースのメソッドを使って、テキストの中立性対策を導入している。
辞書の分析は、単語のカウントと強度がどのようにテキストを分類するかを示している。
Naiive Bayes、Support Vector Machines、Multinomial Logistic Regression、Random Forest、Extreme Gradient (XG) Boostといった機械学習モデルの比較分析が、複数のパフォーマンス指標で実施された。
最良の評価はランダムフォレストで行われ、精度は81%である。
さらに、感情分析は、オンライン活動に基づくTwitterプロフィールに対するパーソナリティ判断ケースに適用される。
関連論文リスト
- A Comparison of Lexicon-Based and ML-Based Sentiment Analysis: Are There
Outlier Words? [14.816706893177997]
本稿では、4つのドメインから抽出された15万以上の英語テキストに対する感情を計算する。
回帰モデルを用いて各ドメインの文書に対するアプローチ間の感情スコアの差をモデル化する。
以上の結果から,単語の重要性はドメインに依存しており,感情スコアの違いを系統的に引き起こす辞書項目が存在しないことが示唆された。
論文 参考訳(メタデータ) (2023-11-10T18:21:50Z) - Leveraging ChatGPT As Text Annotation Tool For Sentiment Analysis [6.596002578395151]
ChatGPTはOpenAIの新製品で、最も人気のあるAI製品として登場した。
本研究では、さまざまな感情分析タスクのためのデータラベリングツールとしてのChatGPTについて検討する。
論文 参考訳(メタデータ) (2023-06-18T12:20:42Z) - A Semantic Approach to Negation Detection and Word Disambiguation with
Natural Language Processing [1.0499611180329804]
本研究の目的は,テキストの語彙構造を一意に評価することで文中の否定を検出する方法を示すことである。
提案手法は,文の文脈的利用を解決するために,テキスト内の関連表現の特徴を全て検討する。
論文 参考訳(メタデータ) (2023-02-05T03:58:45Z) - Sentiment-Aware Word and Sentence Level Pre-training for Sentiment
Analysis [64.70116276295609]
SentiWSPは、WordレベルとSentenceレベルの事前トレーニングタスクを組み合わせた、Sentiment対応の事前トレーニング言語モデルである。
SentiWSPは、様々な文レベルおよびアスペクトレベルの感情分類ベンチマーク上で、最先端のパフォーマンスを新たに達成する。
論文 参考訳(メタデータ) (2022-10-18T12:25:29Z) - Textual Entailment Recognition with Semantic Features from Empirical
Text Representation [60.31047947815282]
テキストが仮説を包含するのは、仮説の真の価値がテキストに従う場合に限る。
本稿では,テキストと仮説のテキストの包含関係を同定する新しい手法を提案する。
本手法では,テキスト・ハイブリッド・ペア間の意味的含意関係を識別できる要素ワイド・マンハッタン距離ベクトルベースの特徴を用いる。
論文 参考訳(メタデータ) (2022-10-18T10:03:51Z) - Emotion Analysis using Multi-Layered Networks for Graphical
Representation of Tweets [0.10499611180329801]
そこで本稿では,複数層ネットワーク(MLN)を用いたソーシャルメディアテキストのグラフィカルなモデル化手法を提案する。
最先端のグラフニューラルネットワーク(GNN)は、Tweet-MLNから情報を抽出し、抽出したグラフの特徴に基づいて予測を行う。
その結果、MLTAはより大きな感情から予測し、通常のポジティブ、ネガティブ、中立的な感情よりも正確な感情を提供するだけでなく、Twitterデータのグループレベルの正確な予測を可能にしている。
論文 参考訳(メタデータ) (2022-07-02T20:26:55Z) - Sentiment analysis in tweets: an assessment study from classical to
modern text representation models [59.107260266206445]
Twitterで公開された短いテキストは、豊富な情報源として大きな注目を集めている。
非公式な言語スタイルや騒々しい言語スタイルといったそれらの固有の特徴は、多くの自然言語処理(NLP)タスクに挑戦し続けている。
本研究では,22データセットの豊富なコレクションを用いて,ツイートに表される感情を識別する既存言語モデルの評価を行った。
論文 参考訳(メタデータ) (2021-05-29T21:05:28Z) - Semantic Analysis for Automated Evaluation of the Potential Impact of
Research Articles [62.997667081978825]
本稿では,情報理論に基づくテキスト意味のベクトル表現のための新しい手法を提案する。
この情報意味論がLeicester Scientific Corpusに基づいてテキスト分類にどのように使用されるかを示す。
テキストの意味を表現するための情報的アプローチは,研究論文の科学的影響を効果的に予測する方法であることを示す。
論文 参考訳(メタデータ) (2021-04-26T20:37:13Z) - Weakly-Supervised Aspect-Based Sentiment Analysis via Joint
Aspect-Sentiment Topic Embedding [71.2260967797055]
アスペクトベース感情分析のための弱教師付きアプローチを提案する。
We learn sentiment, aspects> joint topic embeddeds in the word embedding space。
次に、ニューラルネットワークを用いて単語レベルの識別情報を一般化する。
論文 参考訳(メタデータ) (2020-10-13T21:33:24Z) - A computational model implementing subjectivity with the 'Room Theory'.
The case of detecting Emotion from Text [68.8204255655161]
本研究は,テキスト分析における主観性と一般的文脈依存性を考慮した新しい手法を提案する。
単語間の類似度を用いて、ベンチマーク中の要素の相対的関連性を抽出することができる。
この方法は、主観的評価がテキストの相対値や意味を理解するために関係しているすべてのケースに適用できる。
論文 参考訳(メタデータ) (2020-05-12T21:26:04Z) - Quality of Word Embeddings on Sentiment Analysis Tasks [0.0]
我々は、歌詞感情分析と映画レビューの極性タスクにおいて、事前訓練された単語埋め込みモデルの性能を比較した。
われわれの結果によると、Twitterのツイートは歌詞の感情分析でベスト、Google NewsとCommon Crawlは映画極性分析のトップパフォーマーだ。
論文 参考訳(メタデータ) (2020-03-06T15:03:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。