論文の概要: Emotion Analysis using Multi-Layered Networks for Graphical
Representation of Tweets
- arxiv url: http://arxiv.org/abs/2207.00907v1
- Date: Sat, 2 Jul 2022 20:26:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-05 15:38:10.250764
- Title: Emotion Analysis using Multi-Layered Networks for Graphical
Representation of Tweets
- Title(参考訳): 多層ネットワークを用いたツイートのグラフィカル表現のための感情分析
- Authors: Anna Nguyen, Antonio Longa, Massimiliano Luca, Joe Kaul, Gabriel Lopez
- Abstract要約: そこで本稿では,複数層ネットワーク(MLN)を用いたソーシャルメディアテキストのグラフィカルなモデル化手法を提案する。
最先端のグラフニューラルネットワーク(GNN)は、Tweet-MLNから情報を抽出し、抽出したグラフの特徴に基づいて予測を行う。
その結果、MLTAはより大きな感情から予測し、通常のポジティブ、ネガティブ、中立的な感情よりも正確な感情を提供するだけでなく、Twitterデータのグループレベルの正確な予測を可能にしている。
- 参考スコア(独自算出の注目度): 0.10499611180329801
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anticipating audience reaction towards a certain piece of text is integral to
several facets of society ranging from politics, research, and commercial
industries. Sentiment analysis (SA) is a useful natural language processing
(NLP) technique that utilizes both lexical/statistical and deep learning
methods to determine whether different sized texts exhibit a positive,
negative, or neutral emotion. However, there is currently a lack of tools that
can be used to analyse groups of independent texts and extract the primary
emotion from the whole set. Therefore, the current paper proposes a novel
algorithm referred to as the Multi-Layered Tweet Analyzer (MLTA) that
graphically models social media text using multi-layered networks (MLNs) in
order to better encode relationships across independent sets of tweets. Graph
structures are capable of capturing meaningful relationships in complex
ecosystems compared to other representation methods. State of the art Graph
Neural Networks (GNNs) are used to extract information from the Tweet-MLN and
make predictions based on the extracted graph features. Results show that not
only does the MLTA predict from a larger set of possible emotions, delivering a
more accurate sentiment compared to the standard positive, negative or neutral,
it also allows for accurate group-level predictions of Twitter data.
- Abstract(参考訳): 特定のテキストに対する聴衆の反応を予測することは、政治、研究、商業産業といった社会のいくつかの側面に不可欠である。
感性分析(SA)は、語彙・統計・深層学習の両方の手法を用いて、異なるサイズのテキストが肯定的、否定的、中立的な感情を示すかどうかを判断する有用な自然言語処理(NLP)技術である。
しかし、現在、独立したテキストのグループを分析し、セット全体から主要な感情を抽出するために使用できるツールが不足している。
そこで本研究では,複数階層ネットワーク(MLN)を用いたソーシャルメディアテキストをグラフィカルにモデル化し,独立したツイート集合間の関係を符号化する,MLTA(Multi-Layered Tweet Analyzer)と呼ばれる新しいアルゴリズムを提案する。
グラフ構造は、他の表現方法と比較して複雑なエコシステムにおける意味のある関係を捉えることができる。
最先端のグラフニューラルネットワーク(GNN)は、Tweet-MLNから情報を抽出し、抽出したグラフの特徴に基づいて予測を行う。
その結果、MLTAはより大きな感情から予測し、通常のポジティブ、ネガティブ、中立的な感情よりも正確な感情を提供するだけでなく、Twitterデータのグループレベルの正確な予測を可能にしている。
関連論文リスト
- Eradicating Social Biases in Sentiment Analysis using Semantic Blinding and Semantic Propagation Graph Neural Networks [0.0]
SProp GNNは、テキスト中の感情を予測するために、構文構造と単語レベルの感情的手がかりにのみ依存している。
特定の単語に関する情報にモデルを意味的に盲目にすることで、政治的またはジェンダー的バイアスのような社会的バイアスに対して堅牢である。
SProp GNNは、2つの異なる予測タスクと2つの言語でのレキシコンベースの代替よりもパフォーマンスが優れていることを示している。
論文 参考訳(メタデータ) (2024-11-19T13:23:53Z) - Lexicon-Based Sentiment Analysis on Text Polarities with Evaluation of Classification Models [1.342834401139078]
本研究は,レキシコン法を用いて感情分析を行い,テキストデータを用いた分類モデルの評価を行った。
語彙に基づく手法は、単語レベルでの感情と主観性の強さを識別する。
この研究は、テキストが正、負、中立とラベル付けされているというマルチクラスの問題に基づいている。
論文 参考訳(メタデータ) (2024-09-19T15:31:12Z) - Learning Multiplex Representations on Text-Attributed Graphs with One Language Model Encoder [55.24276913049635]
テキスト分散グラフ上での多重表現学習のための新しいフレームワークMETAGを提案する。
既存の手法とは対照的に、MeTAGは1つのテキストエンコーダを使用して関係性間の共有知識をモデル化する。
学術分野と電子商取引分野の5つのグラフにおいて,9つの下流タスクについて実験を行った。
論文 参考訳(メタデータ) (2023-10-10T14:59:22Z) - Unsupervised Sentiment Analysis of Plastic Surgery Social Media Posts [91.3755431537592]
ソーシャルメディアプラットフォームにまたがる膨大なユーザー投稿は、主に人工知能(AI)のユースケースに使われていない。
自然言語処理(NLP)は、コーパス(corpora)として知られるドキュメントの体系を利用して、人間のような言語理解でコンピュータを訓練するAIのサブフィールドである。
本研究は, 教師なし解析の応用により, コンピュータがプラスティック手術に対する否定的, 肯定的, 中立的なユーザ感情を予測できることを示した。
論文 参考訳(メタデータ) (2023-07-05T20:16:20Z) - ConGraT: Self-Supervised Contrastive Pretraining for Joint Graph and Text Embeddings [20.25180279903009]
テキスト分散グラフ(TAG)におけるテキストとノードの分離表現を共同学習するためのContrastive Graph-Text Pretraining(ConGraT)を提案する。
提案手法は言語モデル(LM)とグラフニューラルネットワーク(GNN)を訓練し,CLIPにインスパイアされたバッチワイドコントラスト学習目標を用いて,それらの表現を共通の潜在空間に整列させる。
実験により、ConGraTは、ノードとテキストのカテゴリ分類、リンク予測、言語モデリングなど、さまざまな下流タスクのベースラインよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-05-23T17:53:30Z) - Universal Multimodal Representation for Language Understanding [110.98786673598015]
本研究は,一般的なNLPタスクの補助信号として視覚情報を利用する新しい手法を提案する。
各文に対して、まず、既存の文-画像ペア上で抽出された軽トピック-画像検索テーブルから、フレキシブルな画像を検索する。
そして、テキストと画像はそれぞれトランスフォーマーエンコーダと畳み込みニューラルネットワークによって符号化される。
論文 参考訳(メタデータ) (2023-01-09T13:54:11Z) - Multiplex Graph Neural Network for Extractive Text Summarization [34.185093491514394]
抽出テキスト要約は、ある文書から最も代表的な文章を要約として抽出することを目的としている。
文と単語の異なる関係を共同でモデル化する新しい多重グラフ畳み込みネットワーク(Multi-GCN)を提案する。
マルチGCNに基づいて,抽出テキスト要約のための多重グラフ要約(Multi-GraS)モデルを提案する。
論文 参考訳(メタデータ) (2021-08-29T16:11:01Z) - Exploiting BERT For Multimodal Target SentimentClassification Through
Input Space Translation [75.82110684355979]
オブジェクト認識変換器を用いて入力空間内の画像を変換する2ストリームモデルを提案する。
次に、翻訳を利用して、言語モデルに多モーダル情報を提供する補助文を構築する。
2つのマルチモーダルTwitterデータセットで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-08-03T18:02:38Z) - Sentiment analysis in tweets: an assessment study from classical to
modern text representation models [59.107260266206445]
Twitterで公開された短いテキストは、豊富な情報源として大きな注目を集めている。
非公式な言語スタイルや騒々しい言語スタイルといったそれらの固有の特徴は、多くの自然言語処理(NLP)タスクに挑戦し続けている。
本研究では,22データセットの豊富なコレクションを用いて,ツイートに表される感情を識別する既存言語モデルの評価を行った。
論文 参考訳(メタデータ) (2021-05-29T21:05:28Z) - Be More with Less: Hypergraph Attention Networks for Inductive Text
Classification [56.98218530073927]
グラフニューラルネットワーク(GNN)は、研究コミュニティで注目され、この標準タスクで有望な結果を実証している。
成功にもかかわらず、それらのパフォーマンスは、単語間の高次相互作用をキャプチャできないため、実際は大部分が危険に晒される可能性がある。
本稿では,テキスト表現学習において,少ない計算量でより表現力の高いハイパーグラフアテンションネットワーク(HyperGAT)を提案する。
論文 参考訳(メタデータ) (2020-11-01T00:21:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。