論文の概要: How the (Tensor-) Brain uses Embeddings and Embodiment to Encode Senses and Decode Symbols
- arxiv url: http://arxiv.org/abs/2409.12846v1
- Date: Thu, 19 Sep 2024 15:45:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 13:10:09.689443
- Title: How the (Tensor-) Brain uses Embeddings and Embodiment to Encode Senses and Decode Symbols
- Title(参考訳): テンソル脳はどのようにしてエンベディングとエンボディメントを使って感覚をコードし、シンボルをデコードするか
- Authors: Volker Tresp, Hang Li,
- Abstract要約: 近年の発展を含むテンソル脳モデルの概要について概説する。
表象層は、意識研究からの象徴的なグローバルワークスペースのモデルである。
インデックス層には、概念、時間インスタンス、述語のためのシンボルが含まれている。
- 参考スコア(独自算出の注目度): 26.516135696182392
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The tensor brain has been introduced as a computational model for perception and memory. We provide an overview of the tensor brain model, including recent developments. The tensor brain has two major layers: the representation layer and the index layer. The representation layer is a model for the subsymbolic global workspace from consciousness research. The state of the representation layer is the cognitive brain state. The index layer contains symbols for concepts, time instances, and predicates. In a bottom-up operation, the cognitive brain state is encoded by the index layer as symbolic labels. In a top-down operation, symbols are decoded and written to the representation layer. This feeds to earlier processing layers as embodiment. The top-down operation became the basis for semantic memory. The embedding vector of a concept forms the connection weights between its index and the representation layer. The embedding is the signature or ``DNA'' of a concept, which is decoded by the brain when its index is activated. It integrates all that is known about a concept from different experiences, modalities, and symbolic decodings. Although being computational, it has been suggested that the tensor brain might be related to the actual operation of the brain. The sequential nature of symbol generation might have been a prerequisite to the generation of natural language. We describe an attention mechanism and discuss multitasking by multiplexing. We emphasize the inherent multimodality of the tensor brain. Finally, we discuss embedded and symbolic reasoning.
- Abstract(参考訳): テンソル脳は知覚と記憶の計算モデルとして導入された。
本稿では、最近の発展を含むテンソル脳モデルの概要について述べる。
テンソル脳には、表現層とインデックス層という2つの大きな層がある。
表象層は、意識研究からの象徴的なグローバルワークスペースのモデルである。
表象層の状態は認知脳状態である。
インデックス層には、概念、時間インスタンス、述語のためのシンボルが含まれている。
ボトムアップ操作では、認知脳状態は、インデックス層によってシンボルラベルとして符号化される。
トップダウン操作では、シンボルがデコードされ、表現層に書き込まれる。
これは、以前の処理層にエボディメントとして供給する。
トップダウン操作はセマンティックメモリの基礎となった。
概念の埋め込みベクトルは、その指数と表現層の間の接続重みを形成する。
埋め込みは概念の「`DNA'」のシグネチャであり、インデックスが活性化された時に脳によってデコードされる。
異なる経験、モダリティ、シンボリックデコーディングから知られている概念をすべて統合している。
計算はしたものの、テンソル脳は実際の脳の動作と関連している可能性があることが示唆されている。
記号生成のシーケンシャルな性質は、自然言語の生成の前提条件であったかもしれない。
注意機構を記述し、多重化によるマルチタスキングについて議論する。
我々はテンソル脳の本質的な多様性を強調する。
最後に,組込みおよび記号的推論について論じる。
関連論文リスト
- Connectivity-Inspired Network for Context-Aware Recognition [1.049712834719005]
視覚認知に対処するために,生体脳の回路モチーフを取り入れることの効果に焦点をあてる。
私たちの畳み込みアーキテクチャは、人間の皮質と皮質下の流れの接続にインスパイアされています。
我々はコンテキスト認識をモデル化するための新しいプラグイン・アンド・プレイ・モジュールを提案する。
論文 参考訳(メタデータ) (2024-09-06T15:42:10Z) - Discrete, compositional, and symbolic representations through attractor dynamics [51.20712945239422]
我々は,思考の確率的言語(PLoT)に似た認知過程をモデル化するために,アトラクタダイナミクスを記号表現と統合した新しいニューラルシステムモデルを導入する。
我々のモデルは、連続表現空間を、事前定義されたプリミティブに頼るのではなく、教師なし学習を通じて、記号系の意味性と構成性の特徴を反映する、記号列に対応する引き付け状態を持つ離散盆地に分割する。
このアプローチは、認知操作の複雑な双対性を反映したより包括的なモデルを提供する、AIにおける表現力の証明された神経弁別可能な基質であるニューラルダイナミクスを通じて、シンボル処理とサブシンボル処理の両方を統合する統一的なフレームワークを確立する。
論文 参考訳(メタデータ) (2023-10-03T05:40:56Z) - LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEGは、神経誘導学習と論理推論をリッチデータとシンボリック知識の両方に統合する、全体論的視覚意味論である。
ファジィ論理に基づく連続的な緩和の間、論理式はデータとニューラルな計算グラフに基礎を置いており、論理によるネットワークトレーニングを可能にする。
これらの設計によりLOGICSEGは、既存のセグメンテーションモデルに容易に統合できる汎用的でコンパクトなニューラル論理マシンとなる。
論文 参考訳(メタデータ) (2023-09-24T05:43:19Z) - Language Knowledge-Assisted Representation Learning for Skeleton-Based
Action Recognition [71.35205097460124]
人間が他人の行動を理解して認識する方法は、複雑な神経科学の問題である。
LA-GCNは、大規模言語モデル(LLM)知識アシストを用いたグラフ畳み込みネットワークを提案する。
論文 参考訳(メタデータ) (2023-05-21T08:29:16Z) - Semantic Brain Decoding: from fMRI to conceptually similar image
reconstruction of visual stimuli [0.29005223064604074]
本稿では,意味的・文脈的類似性にも依存する脳復号法を提案する。
我々は、自然視のfMRIデータセットを使用し、人間の視覚におけるボトムアップとトップダウンの両方のプロセスの存在にインスパイアされたディープラーニングデコードパイプラインを作成します。
視覚刺激の再現は, それまでの文献において, 本来の内容とセマンティックレベルで非常によく一致し, 芸術の状態を超越している。
論文 参考訳(メタデータ) (2022-12-13T16:54:08Z) - The Tensor Brain: A Unified Theory of Perception, Memory and Semantic
Decoding [16.37225919719441]
本稿では,認識と記憶の統一的計算理論を提案する。
我々のモデルでは、知覚、エピソード記憶、セマンティック記憶は異なる機能モードと操作モードで実現される。
論文 参考訳(メタデータ) (2021-09-27T23:32:44Z) - Hierarchical Associative Memory [2.66512000865131]
Associative Memories や Modern Hopfield Networks は、多くの魅力的な特性を持っている。
パターン補完を行い、多数のメモリを格納し、リカレントニューラルネットワークを使用して記述することができる。
本稿では,任意の数のレイヤを持つ連想メモリの完全再帰モデルについて述べる。
論文 参考訳(メタデータ) (2021-07-14T01:38:40Z) - pix2rule: End-to-end Neuro-symbolic Rule Learning [84.76439511271711]
本稿では,画像のオブジェクトへの処理,学習関係,論理規則に関する完全なニューロシンボリックな手法を提案する。
主な貢献は、シンボリックリレーションとルールを抽出できるディープラーニングアーキテクチャにおける差別化可能なレイヤである。
我々のモデルは最先端のシンボリックラーナーを超えてスケールし、ディープリレーショナルニューラルネットワークアーキテクチャよりも優れていることを実証する。
論文 参考訳(メタデータ) (2021-06-14T15:19:06Z) - Emotional EEG Classification using Connectivity Features and
Convolutional Neural Networks [81.74442855155843]
CNNと脳のつながりを利用した新しい分類システムを導入し,その効果を感情映像分類により検証する。
対象映像の感情的特性に関連する脳接続の集中度は分類性能と相関する。
論文 参考訳(メタデータ) (2021-01-18T13:28:08Z) - Towards a Neural Model for Serial Order in Frontal Cortex: a Brain
Theory from Memory Development to Higher-Level Cognition [53.816853325427424]
そこで本研究では,未熟な前頭前野 (PFC) が側頭葉信号の階層的パターンを検出する主要な機能を利用していることを提案する。
我々の仮説では、PFCは順序パターンの形で時間的配列の階層構造を検出し、それらを脳の異なる部分で階層的に情報をインデックスするために利用する。
これにより、抽象的な知識を操作し、時間的に順序付けられた情報を計画するための言語対応の脳にツールを提供する。
論文 参考訳(メタデータ) (2020-05-22T14:29:51Z) - The Tensor Brain: Semantic Decoding for Perception and Memory [25.49830575143093]
我々は知識グラフとテンソルの数学的モデルを用いて知覚と記憶を分析する。
知覚と記憶の生物学的実現は情報処理に制約を課すと主張する。
特に,明示的な認識と宣言的記憶は意味的デコーダを必要とすることを示唆する。
論文 参考訳(メタデータ) (2020-01-29T07:48:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。