論文の概要: How the (Tensor-) Brain uses Embeddings and Embodiment to Encode Senses and Symbols
- arxiv url: http://arxiv.org/abs/2409.12846v2
- Date: Sun, 29 Dec 2024 09:20:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:03:38.722305
- Title: How the (Tensor-) Brain uses Embeddings and Embodiment to Encode Senses and Symbols
- Title(参考訳): テンソル脳はどのようにして埋め込みと身体を使って感覚とシンボルをエンコードするか
- Authors: Volker Tresp, Hang Li,
- Abstract要約: Brain (TB) は知覚と記憶の計算モデルとして導入された。
本稿では,TBモデルの概要を述べるとともに,その機能に関する最近の展開と洞察を紹介する。
- 参考スコア(独自算出の注目度): 26.516135696182392
- License:
- Abstract: The Tensor Brain (TB) has been introduced as a computational model for perception and memory. This paper provides an overview of the TB model, incorporating recent developments and insights into its functionality. The TB is composed of two primary layers: the representation layer and the index layer. The representation layer serves as a model for the subsymbolic global workspace, a concept derived from consciousness research. Its state represents the cognitive brain state, capturing the dynamic interplay of sensory and cognitive processes. The index layer, in contrast, contains symbolic representations for concepts, time instances, and predicates. In a bottom-up operation, sensory input activates the representation layer, which then triggers associated symbolic labels in the index layer. Conversely, in a top-down operation, symbols in the index layer activate the representation layer, which in turn influences earlier processing layers through embodiment. This top-down mechanism underpins semantic memory, enabling the integration of abstract knowledge into perceptual and cognitive processes. A key feature of the TB is its use of concept embeddings, which function as connection weights linking the index layer to the representation layer. As a concept's ``DNA,'' these embeddings consolidate knowledge from diverse experiences, sensory modalities, and symbolic representations, providing a unified framework for learning and memory.
- Abstract(参考訳): Tensor Brain (TB) は知覚と記憶の計算モデルとして導入された。
本稿では,TBモデルの概要を述べるとともに,その機能に関する最近の展開と知見を紹介する。
TBは2つの主層(表現層とインデックス層)から構成される。
表現層は、意識研究から派生した概念である、サブシンボリックなグローバルワークスペースのモデルとして機能する。
その状態は認知脳の状態を表し、感覚と認知過程の動的な相互作用を捉えている。
対照的にインデックス層には、概念、時間インスタンス、述語に関する記号表現が含まれている。
ボトムアップ操作では、感覚入力が表現層を起動し、インデックス層に関連付けられたシンボルラベルをトリガーする。
逆に、トップダウン操作では、インデックス層内のシンボルが表現層を活性化し、エンボディメントを通じて以前の処理層に影響を与える。
このトップダウンメカニズムはセマンティックメモリの基盤となり、抽象的な知識を知覚的および認知的プロセスに統合することができる。
TBの重要な特徴は、インデックス層と表現層をリンクする接続重みとして機能する概念埋め込みの利用である。
概念の「`DNA'」として、これらの埋め込みは多様な経験、感覚のモダリティ、象徴的な表現から知識を集約し、学習と記憶のための統一された枠組みを提供する。
関連論文リスト
- Connectivity-Inspired Network for Context-Aware Recognition [1.049712834719005]
視覚認知に対処するために,生体脳の回路モチーフを取り入れることの効果に焦点をあてる。
私たちの畳み込みアーキテクチャは、人間の皮質と皮質下の流れの接続にインスパイアされています。
我々はコンテキスト認識をモデル化するための新しいプラグイン・アンド・プレイ・モジュールを提案する。
論文 参考訳(メタデータ) (2024-09-06T15:42:10Z) - Discrete, compositional, and symbolic representations through attractor dynamics [51.20712945239422]
我々は,思考の確率的言語(PLoT)に似た認知過程をモデル化するために,アトラクタダイナミクスを記号表現と統合した新しいニューラルシステムモデルを導入する。
我々のモデルは、連続表現空間を、事前定義されたプリミティブに頼るのではなく、教師なし学習を通じて、記号系の意味性と構成性の特徴を反映する、記号列に対応する引き付け状態を持つ離散盆地に分割する。
このアプローチは、認知操作の複雑な双対性を反映したより包括的なモデルを提供する、AIにおける表現力の証明された神経弁別可能な基質であるニューラルダイナミクスを通じて、シンボル処理とサブシンボル処理の両方を統合する統一的なフレームワークを確立する。
論文 参考訳(メタデータ) (2023-10-03T05:40:56Z) - LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEGは、神経誘導学習と論理推論をリッチデータとシンボリック知識の両方に統合する、全体論的視覚意味論である。
ファジィ論理に基づく連続的な緩和の間、論理式はデータとニューラルな計算グラフに基礎を置いており、論理によるネットワークトレーニングを可能にする。
これらの設計によりLOGICSEGは、既存のセグメンテーションモデルに容易に統合できる汎用的でコンパクトなニューラル論理マシンとなる。
論文 参考訳(メタデータ) (2023-09-24T05:43:19Z) - Language Knowledge-Assisted Representation Learning for Skeleton-Based
Action Recognition [71.35205097460124]
人間が他人の行動を理解して認識する方法は、複雑な神経科学の問題である。
LA-GCNは、大規模言語モデル(LLM)知識アシストを用いたグラフ畳み込みネットワークを提案する。
論文 参考訳(メタデータ) (2023-05-21T08:29:16Z) - Semantic Brain Decoding: from fMRI to conceptually similar image
reconstruction of visual stimuli [0.29005223064604074]
本稿では,意味的・文脈的類似性にも依存する脳復号法を提案する。
我々は、自然視のfMRIデータセットを使用し、人間の視覚におけるボトムアップとトップダウンの両方のプロセスの存在にインスパイアされたディープラーニングデコードパイプラインを作成します。
視覚刺激の再現は, それまでの文献において, 本来の内容とセマンティックレベルで非常によく一致し, 芸術の状態を超越している。
論文 参考訳(メタデータ) (2022-12-13T16:54:08Z) - The Tensor Brain: A Unified Theory of Perception, Memory and Semantic
Decoding [16.37225919719441]
本稿では,認識と記憶の統一的計算理論を提案する。
我々のモデルでは、知覚、エピソード記憶、セマンティック記憶は異なる機能モードと操作モードで実現される。
論文 参考訳(メタデータ) (2021-09-27T23:32:44Z) - Hierarchical Associative Memory [2.66512000865131]
Associative Memories や Modern Hopfield Networks は、多くの魅力的な特性を持っている。
パターン補完を行い、多数のメモリを格納し、リカレントニューラルネットワークを使用して記述することができる。
本稿では,任意の数のレイヤを持つ連想メモリの完全再帰モデルについて述べる。
論文 参考訳(メタデータ) (2021-07-14T01:38:40Z) - pix2rule: End-to-end Neuro-symbolic Rule Learning [84.76439511271711]
本稿では,画像のオブジェクトへの処理,学習関係,論理規則に関する完全なニューロシンボリックな手法を提案する。
主な貢献は、シンボリックリレーションとルールを抽出できるディープラーニングアーキテクチャにおける差別化可能なレイヤである。
我々のモデルは最先端のシンボリックラーナーを超えてスケールし、ディープリレーショナルニューラルネットワークアーキテクチャよりも優れていることを実証する。
論文 参考訳(メタデータ) (2021-06-14T15:19:06Z) - Emotional EEG Classification using Connectivity Features and
Convolutional Neural Networks [81.74442855155843]
CNNと脳のつながりを利用した新しい分類システムを導入し,その効果を感情映像分類により検証する。
対象映像の感情的特性に関連する脳接続の集中度は分類性能と相関する。
論文 参考訳(メタデータ) (2021-01-18T13:28:08Z) - Towards a Neural Model for Serial Order in Frontal Cortex: a Brain
Theory from Memory Development to Higher-Level Cognition [53.816853325427424]
そこで本研究では,未熟な前頭前野 (PFC) が側頭葉信号の階層的パターンを検出する主要な機能を利用していることを提案する。
我々の仮説では、PFCは順序パターンの形で時間的配列の階層構造を検出し、それらを脳の異なる部分で階層的に情報をインデックスするために利用する。
これにより、抽象的な知識を操作し、時間的に順序付けられた情報を計画するための言語対応の脳にツールを提供する。
論文 参考訳(メタデータ) (2020-05-22T14:29:51Z) - The Tensor Brain: Semantic Decoding for Perception and Memory [25.49830575143093]
我々は知識グラフとテンソルの数学的モデルを用いて知覚と記憶を分析する。
知覚と記憶の生物学的実現は情報処理に制約を課すと主張する。
特に,明示的な認識と宣言的記憶は意味的デコーダを必要とすることを示唆する。
論文 参考訳(メタデータ) (2020-01-29T07:48:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。