Evaluating Defences against Unsafe Feedback in RLHF
- URL: http://arxiv.org/abs/2409.12914v3
- Date: Wed, 26 Feb 2025 01:01:00 GMT
- Title: Evaluating Defences against Unsafe Feedback in RLHF
- Authors: Domenic Rosati, Giles Edkins, Harsh Raj, David Atanasov, Subhabrata Majumdar, Janarthanan Rajendran, Frank Rudzicz, Hassan Sajjad,
- Abstract summary: This paper looks at learning from unsafe feedback with reinforcement learning.<n>We find that safety-aligned LLMs easily explore unsafe action spaces via generating harmful text.<n>In order to protect against this vulnerability, we adapt a number of both "implict" and "explicit" harmful fine-tuning defences.
- Score: 26.872318173182414
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While there has been progress towards aligning Large Language Models (LLMs) with human values and ensuring safe behaviour at inference time, safety guards can easily be removed when fine tuned on unsafe and harmful datasets. While this setting has been treated extensively, another popular training paradigm, learning from unsafe feedback with reinforcement learning, has previously been unexplored. This is concerning due to the widespread deployment of feedback collection systems. We address this gap by providing an analysis of learning settings where feedback is harmful, i.e. that unsafe samples are preferred over safe ones despite model developers goal to maintain safety. We find that safety-aligned LLMs easily explore unsafe action spaces via generating harmful text and optimize for reward that violates safety constraints indicating that current safety guards are not enough to prevent learning from unsafe feedback. In order to protect against this vulnerability, we adapt a number of both "implict" and "explicit" harmful fine-tuning defences to evaluate whether they are effective as learning constraints in an RLHF setting finding that no method is generally effective pointing to the need for more defence research. We end the paper with the observation that some defences work by performing "harmless reward hacking" for which we provide a theoretical explanation drawn from the theory of Constrained Markov Decision Processes and provide some direction for future defence development.
Related papers
- Safe Vision-Language Models via Unsafe Weights Manipulation [75.04426753720551]
We revise safety evaluation by introducing Safe-Ground, a new set of metrics that evaluate safety at different levels of granularity.
We take a different direction and explore whether it is possible to make a model safer without training, introducing Unsafe Weights Manipulation (UWM)
UWM uses a calibration set of safe and unsafe instances to compare activations between safe and unsafe content, identifying the most important parameters for processing the latter.
arXiv Detail & Related papers (2025-03-14T17:00:22Z) - Probabilistic Shielding for Safe Reinforcement Learning [51.35559820893218]
In real-life scenarios, a Reinforcement Learning (RL) agent must often also behave in a safe manner, including at training time.
We present a new, scalable method, which enjoys strict formal guarantees for Safe RL.
We show that our approach provides a strict formal safety guarantee that the agent stays safe at training and test time.
arXiv Detail & Related papers (2025-03-09T17:54:33Z) - Vulnerability Mitigation for Safety-Aligned Language Models via Debiasing [12.986006070964772]
Safety alignment is an essential research topic for real-world AI applications.
Our study first identified the difficulty of eliminating such vulnerabilities without sacrificing the model's helpfulness.
Our method could enhance the model's helpfulness while maintaining safety, thus improving the trade-off-front.
arXiv Detail & Related papers (2025-02-04T09:31:54Z) - The Best Defense is a Good Offense: Countering LLM-Powered Cyberattacks [2.6528263069045126]
Large language models (LLMs) could soon become integral to autonomous cyber agents.
We introduce novel defense strategies that exploit the inherent vulnerabilities of attacking LLMs.
Our results show defense success rates of up to 90%, demonstrating the effectiveness of turning LLM vulnerabilities into defensive strategies.
arXiv Detail & Related papers (2024-10-20T14:07:24Z) - Robust LLM safeguarding via refusal feature adversarial training [15.76605079209956]
Large language models (LLMs) are vulnerable to adversarial attacks that can elicit harmful responses.
We propose Refusal Feature Adrial Training (ReFAT), a novel algorithm that efficiently performs adversarial training.
Experiment results show that ReFAT significantly improves the robustness of three popular LLMs against a wide range of adversarial attacks.
arXiv Detail & Related papers (2024-09-30T08:41:39Z) - SCANS: Mitigating the Exaggerated Safety for LLMs via Safety-Conscious Activation Steering [56.92068213969036]
Safety alignment is indispensable for Large Language Models (LLMs) to defend threats from malicious instructions.
Recent researches reveal safety-aligned LLMs prone to reject benign queries due to the exaggerated safety issue.
We propose a Safety-Conscious Activation Steering (SCANS) method to mitigate the exaggerated safety concerns.
arXiv Detail & Related papers (2024-08-21T10:01:34Z) - Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training [67.30423823744506]
This study addresses a critical gap in safety tuning practices for Large Language Models (LLMs)
We introduce a novel approach, Decoupled Refusal Training (DeRTa), designed to empower LLMs to refuse compliance to harmful prompts at any response position.
DeRTa incorporates two novel components: (1) Maximum Likelihood Estimation with Harmful Response Prefix, which trains models to recognize and avoid unsafe content by appending a segment of harmful response to the beginning of a safe response, and (2) Reinforced Transition Optimization (RTO), which equips models with the ability to transition from potential harm to safety refusal consistently throughout the harmful
arXiv Detail & Related papers (2024-07-12T09:36:33Z) - Breach By A Thousand Leaks: Unsafe Information Leakage in `Safe' AI Responses [42.136793654338106]
We introduce a new safety evaluation framework based on impermissible information leakage of model outputs.
We show that to ensure safety against inferential adversaries, defense mechanisms must ensure information censorship.
arXiv Detail & Related papers (2024-07-02T16:19:25Z) - Purple-teaming LLMs with Adversarial Defender Training [57.535241000787416]
We present Purple-teaming LLMs with Adversarial Defender training (PAD)
PAD is a pipeline designed to safeguard LLMs by novelly incorporating the red-teaming (attack) and blue-teaming (safety training) techniques.
PAD significantly outperforms existing baselines in both finding effective attacks and establishing a robust safe guardrail.
arXiv Detail & Related papers (2024-07-01T23:25:30Z) - Emerging Safety Attack and Defense in Federated Instruction Tuning of Large Language Models [51.85781332922943]
Federated learning (FL) enables multiple parties to collaboratively fine-tune an large language model (LLM) without the need of direct data sharing.
We for the first time reveal the vulnerability of safety alignment in FedIT by proposing a simple, stealthy, yet effective safety attack method.
arXiv Detail & Related papers (2024-06-15T13:24:22Z) - ASETF: A Novel Method for Jailbreak Attack on LLMs through Translate Suffix Embeddings [58.82536530615557]
We propose an Adversarial Suffix Embedding Translation Framework (ASETF) to transform continuous adversarial suffix embeddings into coherent and understandable text.
Our method significantly reduces the computation time of adversarial suffixes and achieves a much better attack success rate to existing techniques.
arXiv Detail & Related papers (2024-02-25T06:46:27Z) - The Art of Defending: A Systematic Evaluation and Analysis of LLM
Defense Strategies on Safety and Over-Defensiveness [56.174255970895466]
Large Language Models (LLMs) play an increasingly pivotal role in natural language processing applications.
This paper presents Safety and Over-Defensiveness Evaluation (SODE) benchmark.
arXiv Detail & Related papers (2023-12-30T17:37:06Z) - RLHFPoison: Reward Poisoning Attack for Reinforcement Learning with Human Feedback in Large Language Models [62.72318564072706]
Reinforcement Learning with Human Feedback (RLHF) is a methodology designed to align Large Language Models (LLMs) with human preferences.
Despite its advantages, RLHF relies on human annotators to rank the text.
We propose RankPoison, a poisoning attack method on candidates' selection of preference rank flipping to reach certain malicious behaviors.
arXiv Detail & Related papers (2023-11-16T07:48:45Z) - Trojan Activation Attack: Red-Teaming Large Language Models using Activation Steering for Safety-Alignment [31.24530091590395]
We study an attack scenario called Trojan Activation Attack (TA2), which injects trojan steering vectors into the activation layers of Large Language Models.
Our experiment results show that TA2 is highly effective and adds little or no overhead to attack efficiency.
arXiv Detail & Related papers (2023-11-15T23:07:40Z) - Attack Prompt Generation for Red Teaming and Defending Large Language
Models [70.157691818224]
Large language models (LLMs) are susceptible to red teaming attacks, which can induce LLMs to generate harmful content.
We propose an integrated approach that combines manual and automatic methods to economically generate high-quality attack prompts.
arXiv Detail & Related papers (2023-10-19T06:15:05Z) - Defending Against Alignment-Breaking Attacks via Robustly Aligned LLM [23.16217797677075]
We introduce a Robustly Aligned LLM (RA-LLM) to defend against potential alignment-breaking attacks.
RA-LLM can successfully defend against both state-of-the-art adversarial prompts and popular handcrafted jailbreaking prompts.
arXiv Detail & Related papers (2023-09-18T02:07:22Z) - Baseline Defenses for Adversarial Attacks Against Aligned Language
Models [109.75753454188705]
Recent work shows that text moderations can produce jailbreaking prompts that bypass defenses.
We look at three types of defenses: detection (perplexity based), input preprocessing (paraphrase and retokenization), and adversarial training.
We find that the weakness of existing discretes for text, combined with the relatively high costs of optimization, makes standard adaptive attacks more challenging for LLMs.
arXiv Detail & Related papers (2023-09-01T17:59:44Z) - Provable Safe Reinforcement Learning with Binary Feedback [62.257383728544006]
We consider the problem of provable safe RL when given access to an offline oracle providing binary feedback on the safety of state, action pairs.
We provide a novel meta algorithm, SABRE, which can be applied to any MDP setting given access to a blackbox PAC RL algorithm for that setting.
arXiv Detail & Related papers (2022-10-26T05:37:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.